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Preface 
 

About a 100 years ago, biochemist William Ogilvy Kermack and epidemiologist Lieutenant Colonel 

Anderson Gray McKendrick launched one of the first mathematical models in epidemiology in the 

form of a system of differential equations, the SIR model, dealing with the different parts of the 

population when a pandemic is at hand: ‘S’ for ‘Susceptible’ , ‘I’ for ‘Infectious or Infected’ , ’R’ for 

‘Recovered or Removed’, and how individuals travel from each of these ‘compartments’ S,I,R to 

another. There have been several extensions since then, but nevertheless, the original SIR model has 

been the most studied, not only deterministically, but of late stochastically and also numerically.   

 

The main parameters used and estimated are the transmission rate λ , duration of infectious period 

1/γ, and the ensuing basic reproduction number R0 = λ/γ, but, as one average value over the whole 

duration of the epidemic, noted as  [0,T], T the end of the pandemic.  Another version of a time-

varying reproduction number is a weighted average based on the Euler-Lotka equation, where still 

the period [0, t], t ≤ T, is the time-varying factor in stead of a point t in time itself.  

This seems to be the norm in really all the investigations I at least have seen. 
 

In retrospect eying the apparent uncertainties of the different governments all over the world with 

respect to handling the COVID-19 pandemic in the midst of crisis, it’s no wonder that the daily or 

weekly reported increases of numbers of new infections, certainly in the public eye, took precedence 

over a simultaneously even slightly reclining reproduction number as happened here in the 

Netherlands.   

Monitoring the course of a pandemic by treating parameters like the transmission rate and the 

duration of the infectious period as functions of time, the basic timelocal reproduction number, for 

now defined as Rtbloc = λ(t)/γ(t), while setting R0 = λ(0)/γ(0), more adequately reflects the direct 

effects of real changes of government policy during the pandemic, like social distancing, vaccination, 

disease treatment, medicin use, or for that matter, any significant change to the course of the 

pandemic. I would not exclude wars or alien visitors from outer space as possible gamechangers! 
 

This work is about a stochastic approach to the problem. For the SIR model, at the turn of the 

millennium, Britton and Anderson had worked out a weighted averaging method for a period [0, t]. 

What they constructed is an algorithm that has as it’s input 0 as the start of the period and t as a 

moving end of the period. Simply enough, my contribution has been to change the period to  

[t, t + h], locally around time t, thereby obtaining a moving average. At the risk of selling myself 

short, a simple Taylor expansion of the function λ(t)/γ(t) around t in terms of the SIR system of 

differential equations confirmed the relevance of my sumptions: It is about the local growth rate in 

time, the daily/weekly reported increases/decreases of numbers of infections. From there on it was 

helpful that the stochastic processes to be studied were Markovian. 
 

I did however, apart from working it out for the SIR model, expand on their method to a SEIR with a 

birth rate and death rate. This is preceded by first formulating and giving context to the timelocal 

reproduction number as essentially a product of several ‘single transmission and transition 

reproduction numbers’, in case there are 1 or more latency states: ‘E’ for ‘Exposed: infected but not 

yet infectious’. Clearly structuring, explaining and clarifying the aforementioned algorithm at hand, 

sustained by completely written out proofs, is a large part of the effort also, since for most of us 

simple earthly dwellers, mathematical statistics is not exactly an easy walk in the park. 

                                          

                                                                                                                                                  Jan Donker 
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Introduction Timelocal Reproduction Number (TLRN) 
 

To understand what is meant by a timelocal reproduction number, we have to establish a clear link 

with the original concept of a reproduction number, starting with the original deterministic Kermack-

Mckendrick equations, where the following parameters are used to shape the reproduction number: 
 

-  𝜆𝜆  (Transmission Rate)  =  

   C  (Number of Contacts per Unit of Time) . P (Probability of Transmission per Contact) 

 -  
1𝛾𝛾 = 𝐷𝐷 (Duration of Contagious, Infectious Period)     𝑆𝑆′ (𝑡𝑡) =  − 𝜆𝜆𝑁𝑁 𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)                    together forming the reproduction number 𝑅𝑅0 =

𝐶𝐶𝐶𝐶𝐶𝐶.𝑆𝑆(0)𝑁𝑁 = 
𝜆𝜆𝑆𝑆(0)𝑁𝑁𝛾𝛾 , which decides if                       

 𝐼𝐼′ (𝑡𝑡)  =    
𝜆𝜆𝑁𝑁 𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡) −  𝛾𝛾𝐼𝐼(𝑡𝑡)    the epidemic takes off: 𝑅𝑅0 > 1 →  𝐼𝐼′ (0) > 0, or doesn’t start: 𝑅𝑅0 < 1 → 𝐼𝐼′ (0) < 0. 

 𝑅𝑅′ (𝑡𝑡)  =     𝛾𝛾𝐼𝐼(𝑡𝑡)                               Usually 𝜆𝜆 and 𝛾𝛾, and thus 𝑅𝑅0, are taken as constant, and when the epidemic is over, 𝑆𝑆(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) = 𝑅𝑅           the part of the population infected, z, is determined by: 1 − 𝑧𝑧 = 𝑒𝑒−𝑅𝑅0𝑧𝑧. 
 𝑅𝑅 = 𝑛𝑛 + 𝑚𝑚: 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑛𝑛   In this situation, since 𝑆𝑆(0) = 𝑛𝑛: 𝑅𝑅0 = 

𝜆𝜆𝑆𝑆(0)𝑁𝑁𝛾𝛾 =
𝑛𝑛𝑁𝑁 𝜆𝜆𝛾𝛾 =

𝑛𝑛𝑛𝑛+𝑚𝑚 𝜆𝜆𝛾𝛾 ≈ 𝜆𝜆𝛾𝛾 since 𝑚𝑚 ≪ 𝑛𝑛                           𝑆𝑆(0) = 𝑛𝑛, 𝐼𝐼(0) = 𝑚𝑚, 𝑅𝑅(0) = 0,𝑚𝑚 ≪ 𝑅𝑅 𝑆𝑆(𝑡𝑡) = 𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆𝑒𝑒𝑝𝑝𝑡𝑡𝑝𝑝𝑆𝑆𝑡𝑡𝑒𝑒,                         

 𝐼𝐼(𝑡𝑡) = 𝐼𝐼𝑛𝑛𝐼𝐼𝑒𝑒𝑆𝑆𝑡𝑡𝑒𝑒𝐼𝐼 𝑡𝑡𝑛𝑛𝐼𝐼 𝐼𝐼𝑛𝑛𝐼𝐼𝑒𝑒𝑆𝑆𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝𝑆𝑆 𝑅𝑅(𝑡𝑡) = 𝑅𝑅𝑒𝑒𝑆𝑆𝑡𝑡𝑅𝑅𝑒𝑒𝑅𝑅𝑒𝑒𝐼𝐼  𝑡𝑡𝑅𝑅 𝑅𝑅𝑒𝑒𝑚𝑚𝑡𝑡𝑅𝑅𝑒𝑒𝐼𝐼    

  

 

Of course, the actual rate at which 𝐼𝐼(𝑡𝑡) grows or shrinks is 
𝑆𝑆(𝑡𝑡)𝑁𝑁 𝜆𝜆 −  𝛾𝛾 resulting in a factual  

 

 

time-dependent reproduction number 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) =  
𝜆𝜆𝑆𝑆(𝑡𝑡)𝑁𝑁𝛾𝛾 = 𝑅𝑅0 𝑆𝑆(𝑡𝑡)𝑆𝑆(0)

= 𝑅𝑅0 𝑆𝑆(𝑡𝑡)𝑛𝑛  and as functions of time: 

 𝐼𝐼(𝑡𝑡) = 𝐼𝐼(0)𝑒𝑒∫ (
𝜆𝜆𝑁𝑁𝑆𝑆(𝑠𝑠)− 𝛾𝛾)𝑑𝑑𝑠𝑠𝑡𝑡0 =  𝐼𝐼(0)𝑒𝑒− 𝛾𝛾𝑡𝑡 +∫ 𝜆𝜆𝑁𝑁𝑆𝑆(𝑠𝑠)𝑑𝑑𝑠𝑠 

𝑡𝑡0  (Taking 𝐼𝐼(0) > 0) 
 𝑅𝑅(𝑡𝑡) = ∫ 𝛾𝛾𝐼𝐼(0)𝑒𝑒− 𝛾𝛾𝛾𝛾 +∫ 𝜆𝜆𝑁𝑁𝑆𝑆(𝑠𝑠)𝑑𝑑𝑠𝑠 

𝑢𝑢0 𝐼𝐼𝑝𝑝𝑡𝑡0     so exponential growth until ∫ 𝜆𝜆𝑁𝑁 𝑆𝑆(𝑆𝑆)𝐼𝐼𝑆𝑆 
𝑡𝑡0 ≤  𝛾𝛾𝑡𝑡 then growth                  

                                                                                                                                                           is dying out.                                      

The factor 
𝑆𝑆(𝑡𝑡)𝑛𝑛 , with 𝑆𝑆(𝑡𝑡) a declining function of time, secures the existence of a ‘herd immunity’ or  

 

rather ‘population immunity’, which results in the already referred to formula : 1 − 𝑧𝑧 = 𝑒𝑒−𝑅𝑅0𝑧𝑧,  
 

 

describing the part of the total population infected after the end of the pandemic (𝐼𝐼′ (𝑡𝑡) = 𝐼𝐼(𝑡𝑡) = 0). 
 

That’s all very fine, but what if you want to take into consideration a curbed contact rate, ensconced 

in 𝜆𝜆, by social distancing as a government regulation, or a curbed duration of the infectious period, 

represented by  
1𝛾𝛾 , by using Remdesivir or Regeneron, like Donald Trump?  

Mr. President ‘The Donald’ probably thought he had been curbing the epidemic singlehandedly on 

his own, actually claiming the pandemic had all but subsided, while it was raging as never before.  

A true example of ‘Trump Statistics’, also known as ‘Foney Math’! Ooh I’m sorry, ‘Phoney Math’ or 

‘Fake Math’. I’m told he just lost reelection but couldn’t and wouldn’t believe it. Go Joe! 

Joking aside, for now you would want to ‘mathematically’ (actually: statistically!) prove him wrong on 

the spot, but alas, so far you’re stuck! Don’t you hate it when that happens? 
 

Well, as a solution, you could want to take 𝜆𝜆 and 𝛾𝛾 as functions of time 𝜆𝜆(𝑡𝑡) and 𝛾𝛾(𝑡𝑡) to get to: 
 

 𝑆𝑆′ (𝑡𝑡) =  − 𝜆𝜆(𝑡𝑡)𝑛𝑛 𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)                          forming the effective (timelocal) reproduction number  
 

 𝐼𝐼′ (𝑡𝑡)  =      
𝜆𝜆(𝑡𝑡)𝑛𝑛 𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡) −  𝛾𝛾(𝑡𝑡)𝐼𝐼(𝑡𝑡)    𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) = 

𝑆𝑆(𝑡𝑡)𝑛𝑛  
𝜆𝜆(𝑡𝑡)𝛾𝛾(𝑡𝑡)

= 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡), writing 𝑅𝑅𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
𝜆𝜆(𝑡𝑡)𝛾𝛾(𝑡𝑡)

 as the             
 𝑅𝑅′ (𝑡𝑡)  =     𝛾𝛾(𝑡𝑡)𝐼𝐼(𝑡𝑡)                                  basic timelocal reproduction number where still the                 

                                                                       epidemic takes off at 𝑡𝑡 = 0 or not, the same way: 
 

  𝑆𝑆(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) = 𝑅𝑅 = 𝑛𝑛 +𝑚𝑚             𝑅𝑅0 = 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(0) = 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(0) = 
𝜆𝜆(0)𝑆𝑆(0)𝑛𝑛𝛾𝛾(0)

= 
𝜆𝜆(0)𝛾𝛾(0)

= 𝑅𝑅0𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 . 
 

  𝑅𝑅 = 𝑛𝑛 +𝑚𝑚: 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡𝑛𝑛                                                                         
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and as functions of time: 
 

 𝐼𝐼(𝑡𝑡) = 𝐼𝐼(0)𝑒𝑒∫ (
𝜆𝜆(𝑠𝑠)𝑛𝑛 𝑆𝑆(𝑠𝑠)− 𝛾𝛾(𝑠𝑠))𝑑𝑑𝑠𝑠𝑡𝑡0 ,  

 𝑅𝑅(𝑡𝑡) = ∫ 𝛾𝛾(𝑝𝑝)𝐼𝐼(0)𝑒𝑒  ∫ (
𝜆𝜆(𝑠𝑠)𝑛𝑛 𝑆𝑆(𝑠𝑠)− 𝛾𝛾(𝑠𝑠))𝑑𝑑𝑠𝑠 

𝑢𝑢0 𝐼𝐼𝑝𝑝𝑡𝑡0  , so exponential growth until ∫ 𝜆𝜆(𝑠𝑠)𝑛𝑛 𝑆𝑆(𝑆𝑆)𝐼𝐼𝑆𝑆 
𝑡𝑡0 ≤  ∫ 𝛾𝛾(𝑆𝑆)

𝑡𝑡0 𝐼𝐼𝑆𝑆,     
   

                                                                                                                                      then growth dying out. 
 

Again, the factor 
𝑆𝑆(𝑡𝑡)𝑛𝑛 , with 𝑆𝑆(𝑡𝑡) a declining function of time, here not so much securing the existence  

 

of a ‘population immunity’, but surely backing up a succesfull end to the epidemic (Are there still  
 

going to be enough of us to go on?), if parameters 𝜆𝜆(𝑡𝑡) and 𝛾𝛾(𝑡𝑡) allow so. They probably don’t if you 

hug too much! 

Silently we have changed the expression 
𝜆𝜆𝑁𝑁 𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡) to  

𝜆𝜆𝑛𝑛 𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡) (here 
𝜆𝜆(𝑡𝑡)𝑛𝑛 𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)). This need not  

 

necessarily change the overall equation since 𝜆𝜆 and 𝛾𝛾 or 𝜆𝜆(𝑡𝑡) and 𝛾𝛾(𝑡𝑡) for now are unknown anyway,  
 

and so you can simply assume for the ‘original’ deterministic equation: 𝑅𝑅0,𝑁𝑁 =
𝑛𝑛𝑁𝑁  𝜆𝜆𝑁𝑁

 𝛾𝛾𝑁𝑁 =
 𝜆𝜆𝑛𝑛
 𝛾𝛾𝑛𝑛 = 𝑅𝑅0,𝑛𝑛.  

 

So basically, numerically  𝜆𝜆𝑁𝑁 ≈ 𝜆𝜆𝑛𝑛,  𝛾𝛾𝑁𝑁 =  𝛾𝛾𝑛𝑛, and 𝑛𝑛 can function as population size as easily as 𝑅𝑅  
 

 

does. If for instance 𝑚𝑚 = 1 and 𝑅𝑅 = 20.000.000, of course the difference is ridiculously small! 
 

 

The same for 𝜆𝜆(𝑡𝑡) and 𝛾𝛾(𝑡𝑡). And so this can be interpreted more or less as a simple rescaling.  
 
 

This all comes from the concept of the so-called Sellke construction which gives rise to the stochastic  
 

intensity process  
𝜆𝜆𝑛𝑛 𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡), where 𝑛𝑛 = 𝑆𝑆(0), as the rate by which new individuals become infected. 

 

The Sellke construction investigates how the cumulative force of infection 𝐴𝐴(𝑡𝑡) works: 𝐴𝐴(𝑡𝑡) =
𝜆𝜆 ∫ 𝑅𝑅(𝑠𝑠)

𝑡𝑡0 𝑑𝑑𝑠𝑠𝑛𝑛 . 

So 𝐴𝐴(𝑡𝑡) increases at rate  
𝜆𝜆𝑅𝑅(𝑡𝑡)𝑛𝑛 (= 𝐴𝐴′(𝑡𝑡)? ).  In par. 3.5.2, page 64 of [1], it is shown that the Sellke 

construction accurately describes the definition or set up of the ‘prototype stochastic epidemic  

model’ (par. 3.1 [1]), of which we apply, as far as the ‘standard’ Kermack-McKendrick equations are 

concerned, the special case of the ‘general’ stochastic epidemic (par. 3.2.2 of [1]), for which no 

latency period is assumed, and which is endowed with the Markov property. The Markov property is 

there because the infectious period is assumed to be exponentially distributed, so memoryless, 

hence Markovian. This implies that each susceptible individual becomes infected at rate 
𝜆𝜆𝑅𝑅(𝑡𝑡)𝑛𝑛 .  

 

Because there are 𝑆𝑆(𝑡𝑡) such individuals at any time 𝑡𝑡 the overall rate at infection becomes  
𝜆𝜆𝑛𝑛 𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡). 

 

Par. 5.4 [1] and chapters 2,3, 4, 5 and 9 [2] deal extensively with this concept in the Kermack-

McKendrick case. The Sellke construction does contain the possibility of working with a latency 

period. However, when studying an extended SEIR example in chapter 7, in par 7.3, which includes an 

in time variable stochastic population size, 𝑅𝑅(𝑡𝑡), we will revert to 𝑛𝑛 =
∫ 𝑁𝑁(𝑡𝑡+𝑠𝑠)
ℎ0 𝑑𝑑𝑠𝑠ℎ   as the average 

 

population size on [𝑡𝑡, 𝑡𝑡 + ℎ], since, as we have seen, the two situations differ very little. 
 

At the end of paragraph 7.3 a short investigation of the difference between the two is done. 

 

We now have seen that 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) = 
𝑆𝑆(𝑡𝑡)𝑛𝑛  

𝜆𝜆(𝑡𝑡)𝛾𝛾(𝑡𝑡)
= 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) for both  

𝜆𝜆(𝑡𝑡)𝛾𝛾(𝑡𝑡)
 and 

𝜆𝜆𝛾𝛾, 
𝜆𝜆𝛾𝛾 constant in time. 

 

Why we still differ between the effective reproduction number and the timelocal reproduction 

number, is because in other situations like Euler-Lotka (see for instance [14] or [6]), they are not the 

same. There, 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) is really a function of the interval [0, 𝑡𝑡], or, in the discrete case, of the array 

[1,2, … ,𝑘𝑘], so ‘effectively’, though in fact only optically, a function of 𝑡𝑡 or 𝑘𝑘. 
 

Posing the Kermack-McKendrick problem discretely, time steps are actually generation steps. 

Switching from time 𝑡𝑡 to generation 𝑘𝑘, causes 𝛾𝛾(𝑘𝑘) = 1, and 𝜆𝜆(𝑘𝑘) ensconced in 𝐼𝐼(𝑘𝑘 + 1): 
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𝐼𝐼𝑘𝑘+1 − 𝐼𝐼𝑘𝑘 = �𝑆𝑆(𝑘𝑘)𝑛𝑛 𝜆𝜆(𝑘𝑘) − 𝛾𝛾(𝑘𝑘)� 𝐼𝐼𝑘𝑘    
𝛾𝛾(𝑘𝑘)=1�⎯⎯⎯�    𝐼𝐼𝑘𝑘+1 =

𝑆𝑆(𝑘𝑘)𝑛𝑛 𝜆𝜆(𝑘𝑘)𝐼𝐼𝑘𝑘 → 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑘𝑘) =
𝑆𝑆(𝑘𝑘)𝑛𝑛 𝜆𝜆(𝑘𝑘) =

𝑅𝑅𝑘𝑘+1𝑅𝑅𝑘𝑘  

 
 

So in fact, in this case, we are really looking at only a generation-varying infection rate, which looks  

like a time-varying infection rate as mentioned in [6], but isn’t. Since in [6], the term ‘time-varying’ 

refers more to a time-varying interval [0, 𝑡𝑡]. Therefore I specifically have used the term ‘timelocal’. 

For a further clarification on the subject see also appendix 9.4. This is preceded in chapter 8, par. 1 

and par. 2, by an analysis of the characteristics of the effective reproduction number, as it is defined 

in [6] and [14], and allegedly used by the RIVM in the Netherlands during the COVID-19 pandemic. 
 

The RIVM uses the Euler-Lotka population growth model as described in article [6] (Wallinga and 

Lipsitch), at least judging from their website announcement at the time, where this is developed into, 

it seems to me, a central formula for 𝑅𝑅𝑡𝑡: 
 

                                         𝑅𝑅𝑡𝑡 =  
𝑏𝑏�(𝑡𝑡)∫ 𝑏𝑏�(𝑡𝑡−𝑎𝑎)𝑔𝑔(𝑎𝑎)𝑑𝑑𝑎𝑎∞0         (or: 𝑆𝑆�(𝑡𝑡) = 𝑅𝑅𝑡𝑡 ∫ 𝑆𝑆�(𝑡𝑡 − 𝑡𝑡)𝑔𝑔(𝑡𝑡)𝐼𝐼𝑡𝑡∞0 )        

 

Van Dissel of the RIVM talks about 𝑅𝑅𝑡𝑡  as ‘the number of secondary infections per case’ and in [6] it is: 

‘This reproductive number 𝑅𝑅𝑡𝑡  assigns it value to the time at which the secondary cases are infected’. 

So this seems to be a strong indication that we have the right formula. The above formula is looking a 

lot like the formula Tom Britton sent to me, which is: (compare to: 𝐼𝐼(𝑡𝑡)  = 𝑅𝑅𝑡𝑡 ∫ 𝐼𝐼(𝑡𝑡 − 𝑡𝑡) 𝑔𝑔(𝑡𝑡)𝐼𝐼𝑡𝑡∞0 )             
                                                    

                                                𝐼𝐼(𝑡𝑡)~𝑃𝑃𝑡𝑡𝑝𝑝𝑆𝑆𝑆𝑆𝑡𝑡𝑛𝑛(𝑅𝑅𝑡𝑡 ∑ 𝐼𝐼(𝑡𝑡 − 𝑘𝑘)𝑔𝑔(𝑘𝑘)𝑘𝑘 )    
 

I found some flaws with the predictive value of this reproduction number, when daily reported 

infection rates, like for instance 
𝑅𝑅𝑘𝑘+1𝑅𝑅𝑘𝑘 , remain high. Paragraphs 8.3 and 8.4 deal with this situation. 

 

You could call the expression 
𝑅𝑅𝑘𝑘+1𝑅𝑅𝑘𝑘   the ‘generationlocal reproduction number’, if you like. 

 

The MLE for statistically describing the basic reproduction number 𝑅𝑅0 after the end of the pandemic  
 

 

(𝐼𝐼′ (𝑇𝑇) = 𝐼𝐼(𝑇𝑇) = 0), is noted 𝑅𝑅�0(𝑇𝑇) where 𝑅𝑅�0(𝑡𝑡) is calculated by the formula: ([1] and [2] just use 𝑅𝑅�0) 
 

 𝑅𝑅�0(𝑡𝑡) =
𝜆𝜆�𝛾𝛾� =  

𝑁𝑁1(𝑡𝑡)− 𝑁𝑁1(0)∫ 𝑅𝑅(𝑠𝑠)𝑆𝑆̅(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡0 ∫ 𝑅𝑅(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡0𝑁𝑁2(𝑡𝑡)− 𝑁𝑁2(0)
   , 𝑅𝑅1(𝑡𝑡) = 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) and 𝑅𝑅2(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) to be found in [1] and [2].  

This looks like a function of time, but really isn’t. Here, 𝑅𝑅�0(𝑡𝑡) is just a one value estimate for the 

whole period [0, 𝑡𝑡], and moreover, 𝑅𝑅�0(𝑡𝑡) ≥ 1 always holds, no matter what, which is logical anyway, 

since 𝑅𝑅�0(𝑡𝑡) represents 𝑅𝑅0 in case the epidemic actually takes off. [1] and [2] just use the expression 𝑅𝑅�0, but I use the expression 𝑅𝑅�0(𝑡𝑡), because soon, the number of parameters like this will become 

more than 1. In fact, as a function of time, 𝑅𝑅�0(𝑡𝑡) describes the situation of the pandemic as a whole, 

averaging out intermediate spikes in 
𝜆𝜆(𝑡𝑡)𝛾𝛾(𝑡𝑡)

. The part of the total population infected is 
𝑅𝑅(𝑇𝑇)𝑁𝑁 .   

 

As an extra later on, in chapter 8, we will derive an alternative formula for 𝑅𝑅(𝑡𝑡) and 𝑅𝑅(𝑇𝑇) in terms of 

the timelocal reproduction number in a discretely posed problem, regarding the effective 

reproduction number, as it is defined in [6]. For the original inspiration which led to the concept of a 

TLRN, see appendix 9.6. 
 

Furthermore, the actual timelocal aspect of the effective/timelocal reproduction number is in fact  
 

 

the expression 
𝜆𝜆(𝑡𝑡)𝛾𝛾(𝑡𝑡)

 rather then 
𝑆𝑆(𝑡𝑡)𝑛𝑛 .  For instance, social distancing primarily affects 𝜆𝜆(𝑡𝑡). 

This partly explains the term ‘basic’ in the basic timelocal reproduction number 𝑅𝑅𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
𝜆𝜆(𝑡𝑡)𝛾𝛾(𝑡𝑡)

. 

Of course, here, ‘basic’ doesn’t mean ‘epidemic taking off or not’ as the 0 in 𝑅𝑅0 means, but, as the  
 

basic reproduction number 𝑅𝑅0 is estimated as one value by 𝑅𝑅�0(𝑡𝑡) for the interval [0, 𝑡𝑡], we estimate  
 

the basic timelocal reproduction number 𝑅𝑅𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  as one value for the interval [𝑡𝑡, 𝑡𝑡 + ℎ] by 𝑅𝑅�𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(ℎ). 
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So there is never a 𝑅𝑅0(𝑡𝑡), but only a statistical estimate 𝑅𝑅�0(𝑡𝑡) for 𝑅𝑅0 on the interval [0, 𝑡𝑡], and also  
 

there is never a 𝑅𝑅𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(ℎ), but only a statistical estimate 𝑅𝑅�𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(ℎ) for 𝑅𝑅𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  on the interval [𝑡𝑡, 𝑡𝑡 + ℎ]. 
 

 

This explains why we always have 𝑅𝑅�0(𝑡𝑡) > 1 (epidemic taken off!) but for 𝑅𝑅�𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(ℎ) we only have   
 

 𝑅𝑅�𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(ℎ) ≥ 0. This will be discussed extensively later on in this introduction. 
 

 

As statistical estimates for 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) =
𝑆𝑆(𝑡𝑡)𝑛𝑛  𝑅𝑅𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  on interval [𝑡𝑡, 𝑡𝑡 + ℎ] we will use 𝑅𝑅�𝑡𝑡(ℎ) for  

 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) and 𝑅𝑅�𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏(ℎ) for 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡). Of course for now we have: 𝑅𝑅�𝑡𝑡(ℎ) = 𝑅𝑅�𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏(ℎ). 
 

The factual reproduction number might be 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) =
𝑆𝑆(𝑡𝑡)𝑛𝑛  𝑅𝑅𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 , 

𝑆𝑆(𝑡𝑡)𝑛𝑛  as prefactor is just a 

multiplication number which always applies. We are mainly interested in statistically determining 
𝜆𝜆(𝑡𝑡)𝛾𝛾(𝑡𝑡)

. 

Regarding COVID-19, the first year sees this multiplication number 
𝑆𝑆(𝑡𝑡)𝑆𝑆(0)

 probably mainly between 

0,97 and 1, in fact mostly between 0,99 and 1. This factor seems to be an object for data research  
 

only later in the epidemic. Chapter 6, amongst others, deals with this. Now how does 𝑅𝑅𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  look in  
 

terms of the above differential equations?  Like this: (𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) looks even less complicated) 
 𝑅𝑅𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 

𝜆𝜆(𝑡𝑡)𝛾𝛾(𝑡𝑡)
=

𝑛𝑛𝑆𝑆(𝑡𝑡)

𝜆𝜆(𝑡𝑡)𝑆𝑆(𝑡𝑡)𝑅𝑅(𝑡𝑡)𝑛𝑛 1𝛾𝛾(𝑡𝑡)𝑅𝑅(𝑡𝑡)
=

𝑛𝑛𝑆𝑆(𝑡𝑡)

𝑅𝑅′(𝑡𝑡)+𝑅𝑅′(𝑡𝑡)𝑅𝑅′(𝑡𝑡)
=

𝑛𝑛𝑆𝑆(𝑡𝑡)
(1 +

𝑅𝑅′(𝑡𝑡)𝑅𝑅′(𝑡𝑡)
)   ( 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) =

𝑆𝑆(𝑡𝑡)𝑛𝑛 𝜆𝜆(𝑡𝑡)𝛾𝛾(𝑡𝑡)
= 1 +

𝑅𝑅′(𝑡𝑡)𝑅𝑅′(𝑡𝑡)
 ) 

 

Derivatives relating to jump processes are difficult to administer to statistically, but we can use the 

difference quotiënt to reveal the discrete random variables related to the underlying counting 

processes. For ℎ small enough, we use Taylor expansion 𝐼𝐼(𝑡𝑡 + ℎ)− 𝐼𝐼(𝑡𝑡) =  ℎ𝐼𝐼′(𝑡𝑡) + 𝑡𝑡(ℎ) where 

here mainly is used:  

Let 𝐼𝐼𝑎𝑎,𝑏𝑏(𝑡𝑡) =
𝑎𝑎−𝑡𝑡𝑏𝑏−𝑡𝑡 ,𝑡𝑡 > 0 and 𝑆𝑆 > 0, then 𝐼𝐼𝑎𝑎,𝑏𝑏�𝑡𝑡(ℎ)� =

𝑎𝑎−𝑏𝑏(ℎ)𝑏𝑏−𝑏𝑏(ℎ)
=  

𝑎𝑎𝑏𝑏 +
𝑎𝑎−𝑏𝑏𝑏𝑏2 𝑡𝑡(ℎ) + 𝑡𝑡(ℎ)  =

𝑎𝑎𝑏𝑏 ± 𝑡𝑡(ℎ). 

 

In the formulas below, in the first step, we in fact use: ℎ𝐼𝐼′(𝑡𝑡) = 𝐼𝐼(𝑡𝑡 + ℎ)− 𝐼𝐼(𝑡𝑡) − 𝑡𝑡(ℎ) for  
 

numerator and denominator, and in the second step the form 𝐼𝐼𝑎𝑎,𝑏𝑏(𝑡𝑡) for the whole expression. 
 

 𝑅𝑅𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 
𝜆𝜆(𝑡𝑡)𝛾𝛾(𝑡𝑡)

=
𝑛𝑛𝑆𝑆(𝑡𝑡)

ℎ�𝑅𝑅′(𝑡𝑡)+𝑅𝑅′(𝑡𝑡)�ℎ𝑅𝑅′(𝑡𝑡)
=

𝑛𝑛𝑆𝑆(𝑡𝑡)

𝑅𝑅(𝑡𝑡+ℎ)−𝑅𝑅(𝑡𝑡)+𝑅𝑅(𝑡𝑡+ℎ)−𝑅𝑅(𝑡𝑡)− 𝑏𝑏(ℎ)𝑅𝑅(𝑡𝑡+ℎ)−𝑅𝑅(𝑡𝑡) − 𝑏𝑏(ℎ)
=

𝑛𝑛𝑆𝑆(𝑡𝑡)

𝑁𝑁1(𝑡𝑡+ℎ)−𝑁𝑁1(𝑡𝑡)𝑁𝑁2(𝑡𝑡+ℎ)−𝑁𝑁2(𝑡𝑡)
± 𝑡𝑡(ℎ) 

 

( 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) = 
𝑆𝑆(𝑡𝑡)𝜆𝜆(𝑡𝑡)𝑛𝑛𝛾𝛾(𝑡𝑡)

=
𝑁𝑁1(𝑡𝑡+ℎ)−𝑁𝑁1(𝑡𝑡)𝑁𝑁2(𝑡𝑡+ℎ)−𝑁𝑁2(𝑡𝑡)

± 𝑡𝑡(ℎ)  =
𝑅𝑅(𝑡𝑡+ℎ)−𝑅𝑅(𝑡𝑡)+𝑅𝑅(𝑡𝑡+ℎ)−𝑅𝑅(𝑡𝑡)𝑅𝑅(𝑡𝑡+ℎ)−𝑅𝑅(𝑡𝑡)

± 𝑡𝑡(ℎ) = 1 +
𝑅𝑅(𝑡𝑡+ℎ)−𝑅𝑅(𝑡𝑡)𝑅𝑅(𝑡𝑡+ℎ)−𝑅𝑅(𝑡𝑡)

± 𝑡𝑡(ℎ) )  

 

with 𝑅𝑅1(𝑡𝑡) = 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) and 𝑅𝑅2(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) as the stochastic processes/random variables here. 
 

Expanding 
𝑛𝑛𝑆𝑆(𝑡𝑡)

 over the interval [0,ℎ]:  
𝑛𝑛𝑆𝑆(𝑡𝑡)

=
ℎ𝑛𝑛𝑅𝑅(𝑡𝑡)ℎ𝑆𝑆(𝑡𝑡)𝑅𝑅(𝑡𝑡)

=
𝑛𝑛 ∫ 𝑅𝑅(𝑡𝑡+𝑠𝑠)𝑑𝑑𝑠𝑠ℎ0∫ 𝑆𝑆(𝑡𝑡+𝑠𝑠)𝑅𝑅(𝑡𝑡+𝑠𝑠)𝑑𝑑𝑠𝑠ℎ0 ± 𝑡𝑡(ℎ)  

 

We move to an estimate for 𝑅𝑅𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 : ( using  (𝑡𝑡 ± 𝑡𝑡(ℎ))(𝑆𝑆 ± 𝑡𝑡(ℎ)) = 𝑡𝑡𝑆𝑆 ± 𝑡𝑡(ℎ) ) 
 𝑅𝑅𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = (

𝑁𝑁1(𝑡𝑡+ℎ)−𝑁𝑁1(𝑡𝑡)𝑁𝑁2(𝑡𝑡+ℎ)−𝑁𝑁2(𝑡𝑡)
± 𝑡𝑡(ℎ))(

𝑛𝑛 ∫ 𝑅𝑅(𝑡𝑡+𝑠𝑠)𝑑𝑑𝑠𝑠ℎ0∫ 𝑆𝑆(𝑡𝑡+𝑠𝑠)𝑅𝑅(𝑡𝑡+𝑠𝑠)𝑑𝑑𝑠𝑠ℎ0 ± 𝑡𝑡(ℎ))           

 

           =  
𝑁𝑁1(𝑡𝑡+ℎ) − 𝑁𝑁1(𝑡𝑡)∫ 𝑅𝑅(𝑡𝑡+𝑠𝑠)𝑆𝑆̅(𝑡𝑡+𝑠𝑠)𝑑𝑑𝑠𝑠ℎ0 ∫ 𝑅𝑅(𝑡𝑡+𝑠𝑠)𝑑𝑑𝑠𝑠ℎ0𝑁𝑁2(𝑡𝑡+ℎ) − 𝑁𝑁2(𝑡𝑡)

± 𝑡𝑡(ℎ) = 𝑅𝑅�𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(ℎ) ± 𝑡𝑡(ℎ)    

 

This might look like we have been blurring the estimate, but this will turn out to be the MLE resulting 

from the log-likelihood equation, that comes out of the counting processes and corresponding jump 

processes we are going to describe, as it is mentioned on the previous page as well. Furthermore, an 

MLE, in this case, should be spread naturally over the interval [0,ℎ]. Finally, showing the soundness 

of this estimate, by taking the limit for ℎ → 0: 
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limℎ→0𝑅𝑅�𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(ℎ) = limℎ→0 𝑁𝑁1(𝑡𝑡+ℎ) − 𝑁𝑁1(𝑡𝑡)ℎ∫ 𝐼𝐼(𝑡𝑡+𝑠𝑠)𝑆𝑆(𝑡𝑡+𝑠𝑠)𝑑𝑑𝑠𝑠ℎ0 ℎ
𝑛𝑛∫ 𝐼𝐼(𝑡𝑡+𝑠𝑠)𝑑𝑑𝑠𝑠ℎ0 ℎ

 𝑁𝑁2(𝑡𝑡+ℎ) − 𝑁𝑁2(𝑡𝑡)ℎ = 
𝑁𝑁1′(𝑡𝑡)𝑅𝑅(𝑡𝑡)𝑆̅𝑆(𝑡𝑡)

𝑅𝑅(𝑡𝑡)𝑁𝑁2′(𝑡𝑡)
= 

𝑁𝑁1′(𝑡𝑡)𝑁𝑁2′(𝑡𝑡)𝑆𝑆̅(𝑡𝑡)
 = 

𝑅𝑅′ (𝑡𝑡)+ 𝑅𝑅′ (𝑡𝑡)𝑅𝑅′ (𝑡𝑡)𝑆̅𝑆(𝑡𝑡)
 

 

                          =   
𝑛𝑛𝑆𝑆(𝑡𝑡)

 (1 + 
𝑅𝑅′ (𝑡𝑡)𝑅𝑅′ (𝑡𝑡)

) = 
𝜆𝜆(𝑡𝑡)𝛾𝛾(𝑡𝑡)

= 𝑅𝑅𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≅ 1 + 
𝑅𝑅′ (𝑡𝑡)𝑅𝑅′ (𝑡𝑡)

 in the first few months of the epidemic. 

 

The formula for  𝑅𝑅�𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(ℎ) is in sync with formula 5.41, par. 5.4.2 of [1] for 𝑅𝑅�0(𝑡𝑡), in the sense that 

only the observed timeperiod is different: interval [0, 𝑡𝑡] replaced by interval [𝑡𝑡, 𝑡𝑡 + ℎ]. 
 

 𝑅𝑅�0(𝑡𝑡) =  
𝑁𝑁1(𝑡𝑡)− 𝑁𝑁1(0)∫ 𝑅𝑅(𝑠𝑠)𝑆𝑆̅(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡0 ∫ 𝑅𝑅(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡0𝑁𝑁2(𝑡𝑡)− 𝑁𝑁2(0)

≈ 
𝑁𝑁1(𝑡𝑡)− 𝑁𝑁1(0)𝑁𝑁2(𝑡𝑡)− 𝑁𝑁2(0)

= 1 +
𝑅𝑅(𝑡𝑡)−𝑅𝑅(0)+𝑅𝑅(𝑡𝑡)−𝑅𝑅(0)𝑅𝑅(𝑡𝑡)−𝑅𝑅(0)

≅ 1 +
𝑅𝑅(𝑡𝑡)𝑅𝑅(𝑡𝑡)

  

 
 

in the first few months of the epidemic.  
 

Since 𝐼𝐼(𝑡𝑡), by it’s very nature, in fact is more of a timelocal number, so to speak the leaky tire you are 

constantly inflating, and which constantly leaks to (feeds) 𝑅𝑅(𝑡𝑡), it is no riddle that this reproduction 

number stays modest, however large 𝐼𝐼(𝑡𝑡), locally in time, gets. Even if you take into account the 
 

 multiplication factor 
∫ 𝑅𝑅(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡0∫ 𝑅𝑅(𝑠𝑠)𝑆̅𝑆(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡0 = 

𝑛𝑛 ∫ 𝑅𝑅(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡0∫ 𝑅𝑅(𝑠𝑠)𝑆𝑆(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡0 ≈ 1 which in practice will stay like that for a long time. 

 

Of course, 𝑅𝑅�0(𝑡𝑡) does reflect changes like government measures (affecting 𝑅𝑅1(𝑡𝑡), 𝐼𝐼(𝑡𝑡), 𝑆𝑆(𝑡𝑡)),  
 

changes in the infectious period (affecting 𝑅𝑅2(𝑡𝑡), 𝐼𝐼(𝑡𝑡), 𝑆𝑆(𝑡𝑡)), and so on, but does so in an aggregated  
 

way, on average if you will. More or less containing 𝑅𝑅(𝑡𝑡), making it grow less or more. 
 

As far as I can see, there are  two ways to estimate 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡):    
 

1) 𝑅𝑅�𝑡𝑡(ℎ) =
𝑆𝑆(𝑡𝑡)𝑛𝑛 𝑅𝑅�𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(ℎ) =

𝑆𝑆(𝑡𝑡)𝑛𝑛 𝑁𝑁1(𝑡𝑡+ℎ) − 𝑁𝑁1(𝑡𝑡)∫ 𝑅𝑅(𝑡𝑡+𝑠𝑠)𝑆𝑆̅(𝑡𝑡+𝑠𝑠)𝑑𝑑𝑠𝑠ℎ0
∫ 𝑅𝑅(𝑡𝑡+𝑠𝑠)𝑑𝑑𝑠𝑠ℎ0𝑁𝑁2(𝑡𝑡+ℎ) − 𝑁𝑁2(𝑡𝑡)

  

 

2) Expanding 
𝑆𝑆(𝑡𝑡)𝑛𝑛  over the interval [0,ℎ] like the expression 

𝑛𝑛𝑆𝑆(𝑡𝑡)
 before: 

𝑆𝑆(𝑡𝑡)𝑛𝑛 =
∫ 𝑆𝑆̅(𝑡𝑡+𝑠𝑠)𝑅𝑅(𝑡𝑡+𝑠𝑠)𝑑𝑑𝑠𝑠ℎ0 ∫ 𝑅𝑅(𝑡𝑡+𝑠𝑠)𝑑𝑑𝑠𝑠ℎ0 ± 𝑡𝑡(ℎ): 

 

      𝑅𝑅�𝑡𝑡(ℎ) =
∫ 𝑆𝑆̅(𝑡𝑡+𝑠𝑠)𝑅𝑅(𝑡𝑡+𝑠𝑠)𝑑𝑑𝑠𝑠ℎ0 ∫ 𝑅𝑅(𝑡𝑡+𝑠𝑠)𝑑𝑑𝑠𝑠ℎ0 𝑅𝑅�𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(ℎ) =

𝑅𝑅1(𝑡𝑡+ℎ) − 𝑅𝑅1(𝑡𝑡)𝑅𝑅2(𝑡𝑡+ℎ) − 𝑅𝑅2(𝑡𝑡) = 1 +
𝑅𝑅(𝑡𝑡+ℎ)−𝑅𝑅(𝑡𝑡)𝑅𝑅(𝑡𝑡+ℎ)−𝑅𝑅(𝑡𝑡)

 ( 
ℎ→0�⎯� 1 +

𝑅𝑅′ (𝑡𝑡)𝑅𝑅′ (𝑡𝑡)
 ) 

 

My preference is nr. 2, which shouldn’t be surprising. It is important to note that 𝐼𝐼(𝑡𝑡 + ℎ) − 𝐼𝐼(𝑡𝑡) < 0  
 

is a possibility which then means that 𝑅𝑅�𝑡𝑡(ℎ) < 1. All of this will be covered extensively further on in 

chapter 6.  The main part of this document happens in chapters 1 – 5:  
 

   

 1) 𝑆𝑆ℎ. 1: 

From Counting

Processes

to Martingales
  → ⎩⎨

⎧  a) ch. 2:   Convergence to Integral Equations

                 → Vitali’s Convergence Theorem 

b) ch. 3: 

  

 Variation Processes                           
         ⎭⎬

⎫
 → Rebolledo’s 

Theorem
      

  

 2) ch. 4: Realization Likelihood →  Log − Likelihood →  MLE                                                                   
         ⎭⎪⎪⎬

⎪⎪⎫ → ch. 5:    Estimates

      and Variances
  

 

1) Ch.1: The first path formulates stochastic counting processes 𝑌𝑌𝑖𝑖𝑡𝑡(ℎ) = 𝑅𝑅𝑖𝑖(𝑡𝑡 + ℎ)− 𝑅𝑅𝑖𝑖(𝑡𝑡) on basis   
 

  of Kermack-McKendrick equations (𝑅𝑅1(𝑡𝑡) = 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡),𝑅𝑅2(𝑡𝑡) = 𝑅𝑅(𝑡𝑡)), notation of fractions: 
𝑌𝑌𝑖𝑖𝑡𝑡(𝑠𝑠)𝑛𝑛 , with 

 

 

  matching jump processes �𝑃𝑃(𝑌𝑌𝑖𝑖𝑡𝑡(ℎ + 𝛿𝛿) − 𝑌𝑌𝑖𝑖𝑡𝑡(ℎ) = 1) = 𝛿𝛿𝜆𝜆𝑖𝑖(𝑡𝑡 + ℎ)  + 𝑡𝑡(𝛿𝛿)                     𝑃𝑃(𝑌𝑌𝑖𝑖𝑡𝑡(ℎ + 𝛿𝛿) − 𝑌𝑌𝑖𝑖𝑡𝑡(ℎ) = 0) = 1− 𝛿𝛿𝜆𝜆𝑖𝑖(𝑡𝑡 + ℎ)  + 𝑡𝑡(𝛿𝛿)            𝑃𝑃(|𝑌𝑌 
𝑡𝑡(ℎ + 𝛿𝛿) − 𝑌𝑌 

𝑡𝑡(ℎ)| = 0 ) = 1 − 𝛿𝛿 ∑ 𝜆𝜆𝑖𝑖(𝑡𝑡 + ℎ)2𝑖𝑖=1 + 𝑡𝑡(𝛿𝛿)

 
with intensities 𝜆𝜆𝑖𝑖(𝑡𝑡 + 𝑆𝑆),   𝑝𝑝 = 1,2

by formulating time − dependent 

probability distributions ,

 

 

  resulting in formulating corresponding zero mean martingales:  𝑀𝑀𝑖𝑖𝑡𝑡(ℎ) = 𝑌𝑌𝑖𝑖𝑡𝑡(ℎ) − ∫ 𝜆𝜆𝑖𝑖(𝑡𝑡 + 𝑆𝑆)𝐼𝐼𝑆𝑆ℎ0  , 
    

   with matching intensities on [𝑡𝑡, 𝑡𝑡 + ℎ]: 𝜆𝜆1(𝑡𝑡 + 𝑆𝑆) =
𝜆𝜆𝑛𝑛 𝑆𝑆(𝑡𝑡 + 𝑆𝑆−)𝐼𝐼(𝑡𝑡 + 𝑆𝑆−) and  𝜆𝜆2(𝑡𝑡 + 𝑆𝑆) = 𝛾𝛾𝐼𝐼(𝑡𝑡 + 𝑆𝑆 −). 
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   These are connected with, part of, the original martingales in [1] and [2] for the whole interval [0, 𝑡𝑡]: 
 
 

   𝑀𝑀𝑖𝑖 (𝑡𝑡) = 𝑅𝑅𝑖𝑖(𝑡𝑡) −𝑅𝑅𝑖𝑖(0) − ∫ 𝜆𝜆𝑖𝑖(𝑆𝑆)𝐼𝐼𝑆𝑆𝑡𝑡0  where 𝜆𝜆1(𝑆𝑆) =
𝜆𝜆𝑛𝑛 𝑆𝑆(𝑆𝑆−)𝐼𝐼(𝑆𝑆−) and  𝜆𝜆2(𝑆𝑆) = 𝛾𝛾𝐼𝐼(𝑆𝑆 −). As we have 

 

   seen, the 𝑀𝑀𝑖𝑖 (𝑡𝑡)-parameters 𝜆𝜆 and 𝛾𝛾 are to be estimated by  𝑅𝑅�0(𝑡𝑡) =
𝜆𝜆�𝛾𝛾� =  

𝑁𝑁1(𝑡𝑡)− 𝑁𝑁1(0)∫ 𝑅𝑅(𝑠𝑠)𝑆̅𝑆(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡0 ∫ 𝑅𝑅(𝑠𝑠)𝑑𝑑𝑠𝑠𝑡𝑡0𝑁𝑁2(𝑡𝑡)− 𝑁𝑁2(0)
    

 

   depending on the interval [0, 𝑡𝑡].  
 

 

   In themselves, the  𝑀𝑀𝑖𝑖𝑡𝑡(ℎ) do not represent a mini epidemic in the same sense that the 𝑀𝑀𝑖𝑖 (𝑡𝑡)  
 

   represent an epidemic in progress, because this would require 𝑛𝑛 = 𝑛𝑛(𝑡𝑡) = 𝑆𝑆(𝑡𝑡) for the beginning. 

 

   It is more like cutting a  ′[𝑡𝑡, 𝑡𝑡 + ℎ] − slice’ of the ′[0, 𝑡𝑡] − martingale’, and then forming estimates  
 

   for 𝜆𝜆 and 𝛾𝛾, while taking into account that the actual ‘slice’ is represented by the interval [𝑡𝑡, 𝑡𝑡 + ℎ]. 
 

   It’s all Markovian anyway, and this is why the time-dependent probability distributions connected   

   to the jump process are not explicitly conditionally formulated. This approach is consistent   

   with the preliminary MLE estimate we found:  

                                                  𝑅𝑅�𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(ℎ) =  
𝑁𝑁1(𝑡𝑡+ℎ) − 𝑁𝑁1(𝑡𝑡)∫ 𝑅𝑅(𝑡𝑡+𝑠𝑠)𝑆𝑆̅(𝑡𝑡+𝑠𝑠)𝑑𝑑𝑠𝑠ℎ0 ∫ 𝑅𝑅(𝑡𝑡+𝑠𝑠)𝑑𝑑𝑠𝑠ℎ0𝑁𝑁2(𝑡𝑡+ℎ) − 𝑁𝑁2(𝑡𝑡)

 

    

  I hope my ‘chunk of pie wise’ explanation didn’t put you off too much! I’m fond of pie, sometimes… 
 

  Consequently the 𝑀𝑀𝑖𝑖𝑡𝑡(ℎ) are identified as centered Poisson processes, thereby ensuring two things: 
 

 a) Ch. 2: Integral equations as deterministic limits of almost sure convergence of random variables:  
      

    When the 𝑌𝑌𝑖𝑖𝑡𝑡(𝑆𝑆), 𝑝𝑝 = 1,2 are written as fractions (
𝑌𝑌𝑖𝑖𝑡𝑡(𝑠𝑠)𝑛𝑛 , 𝑝𝑝 = 1,2), 𝑆𝑆 ∈ [0,ℎ], then for 𝑛𝑛 →∞, we   

    have convergence in probability of the 
𝑌𝑌𝑖𝑖𝑡𝑡(𝑠𝑠)𝑛𝑛  and underlying stochastic variables like 𝑝𝑝𝑡𝑡(𝑆𝑆) =  

𝑅𝑅(𝑡𝑡+𝑠𝑠)𝑛𝑛 , 
     

    𝑆𝑆𝑡𝑡(𝑆𝑆) =
𝑆𝑆(𝑡𝑡+𝑠𝑠)𝑛𝑛   and 𝑅𝑅𝑡𝑡(𝑆𝑆) =

𝑅𝑅(𝑡𝑡+𝑠𝑠)𝑛𝑛  to deterministic variables 𝑝𝑝𝑑𝑑(𝑡𝑡 + 𝑆𝑆),  𝑆𝑆𝑑𝑑(𝑡𝑡 + 𝑆𝑆), 𝑅𝑅𝑑𝑑(𝑡𝑡 + 𝑆𝑆) and  
 

    𝑦𝑦𝑖𝑖𝑡𝑡(𝑆𝑆) , which satisfy the fractional Kermack-McKendrick equations by way of an integral equation,   
 

    by almost sure convergence of martingale expressions 𝑛𝑛−1𝑀𝑀𝑝𝑝𝑡𝑡(𝑆𝑆): 
 

      �𝑆𝑆𝑡𝑡(𝑆𝑆)𝑝𝑝𝑡𝑡(𝑆𝑆)
� = �𝑆𝑆𝑡𝑡(0)𝑝𝑝𝑡𝑡(0)

� + 𝑛𝑛−1 �−1 0

1 −1
� �𝑀𝑀1𝑡𝑡(𝑆𝑆)𝑀𝑀2𝑡𝑡(𝑆𝑆)

�+ ∫ �−𝜆𝜆 0𝜆𝜆 −𝛾𝛾� �𝑆𝑆𝑡𝑡(𝑝𝑝)𝑝𝑝𝑡𝑡(𝑝𝑝)𝑝𝑝𝑡𝑡(𝑝𝑝)
�𝑠𝑠0 𝐼𝐼𝑝𝑝 𝐶𝐶→ (

𝑎𝑎.𝑠𝑠.  𝑎𝑎𝑏𝑏𝑠𝑠𝑏𝑏!�⎯⎯⎯⎯⎯�) 

 

   �𝑆𝑆𝑑𝑑(𝑡𝑡 + 𝑆𝑆)𝑝𝑝𝑑𝑑(𝑡𝑡 + 𝑆𝑆)
� = �𝑆𝑆𝑑𝑑(𝑡𝑡)𝑝𝑝𝑑𝑑(𝑡𝑡)�+ ∫ �−𝜆𝜆 0𝜆𝜆 −𝛾𝛾� �𝑆𝑆𝑑𝑑(𝑡𝑡 + 𝑝𝑝)𝑝𝑝𝑑𝑑(𝑡𝑡 + 𝑝𝑝)𝑝𝑝𝑑𝑑(𝑡𝑡 + 𝑝𝑝)

�𝑠𝑠0 𝐼𝐼𝑝𝑝  (subscript .𝑑𝑑 for deterministic): 

  

    Caused by :    sup0≤𝛾𝛾≤𝑠𝑠�𝑛𝑛−1𝑀𝑀𝑖𝑖𝑡𝑡(𝑝𝑝)� 𝑎𝑎.𝑠𝑠.�� 0 and by that: sup0<=𝛾𝛾<=𝑠𝑠 �𝑌𝑌𝑖𝑖𝑡𝑡(𝛾𝛾)𝑛𝑛 − 𝑦𝑦𝑖𝑖𝑡𝑡(𝑝𝑝)� 𝑎𝑎.𝑠𝑠.�� 0, 𝑆𝑆 ∈ [0,ℎ]                                                         

 

                            by a general theorem for centered Poisson processes. 
    

   Vitali’s Convergence Theorem then not only ensures the convergence of expectations and variances  
 

   of the ‘basic’ stochastic variables  𝑝𝑝𝑡𝑡(𝑆𝑆) =  
𝑅𝑅(𝑡𝑡+𝑠𝑠)𝑛𝑛 , 𝑆𝑆𝑡𝑡(𝑆𝑆) =

𝑆𝑆(𝑡𝑡+𝑠𝑠)𝑛𝑛   and 𝑅𝑅𝑡𝑡(𝑆𝑆) =
𝑅𝑅(𝑡𝑡+𝑠𝑠)𝑛𝑛 , but also of      

 

   their linear combinations , as well as of their products and integral expressions. 
 

b) Ch. 3: Accompanying Variation Processes 𝑉𝑉(𝑡𝑡) to zero mean martingales 𝑀𝑀(𝑡𝑡): 𝑉𝑉𝑡𝑡𝑅𝑅�𝑀𝑀(𝑡𝑡)� = 𝐸𝐸(𝑉𝑉(𝑡𝑡)) 
                              

  Translated to zero mean martingales: 𝑀𝑀𝑖𝑖𝑡𝑡(𝑆𝑆) = 𝑌𝑌𝑖𝑖𝑡𝑡(𝑆𝑆) − ∫ 𝜆𝜆𝑖𝑖(𝑡𝑡 + 𝑝𝑝)𝐼𝐼𝑆𝑆𝑠𝑠0 , 𝑆𝑆 ∈ [0,ℎ], it can be proved: 
 

   For �𝑀𝑀𝑖𝑖𝑡𝑡(𝑆𝑆)� = 𝑌𝑌𝑖𝑖𝑡𝑡(𝑆𝑆) and 〈𝑀𝑀𝑖𝑖𝑡𝑡(𝑆𝑆)〉 = ∫ 𝜆𝜆𝑖𝑖(𝑡𝑡 + 𝑝𝑝)𝐼𝐼𝑝𝑝𝑠𝑠0  and so for 𝑀𝑀𝑖𝑖𝑡𝑡(𝑆𝑆) = �𝑀𝑀𝑖𝑖𝑡𝑡(𝑆𝑆)� − 〈𝑀𝑀𝑖𝑖𝑡𝑡(𝑆𝑆)〉 holds: 
 𝐸𝐸��𝑀𝑀𝑖𝑖𝑡𝑡(𝑆𝑆)�� = 𝐸𝐸�〈𝑀𝑀𝑖𝑖𝑡𝑡(𝑆𝑆)〉� = 𝑉𝑉𝑡𝑡𝑅𝑅 �𝑀𝑀𝑖𝑖𝑡𝑡(𝑆𝑆)� (= 𝑌𝑌𝑖𝑖𝑡𝑡(𝑆𝑆)) 


