
 Rexx Programmer’s Reference, 2nd Edition

Howard Fosdick

Rexx Programmer’s Reference, 2nd Edition

Published by Rexx Language Association

 8525 Pinefield Road,

 Apex, NC 27523-9601, USA

The Rexx Language Association is a Non-Profit Corporation registered in North Carolina, USA, incorporated

in 1998. Visit RexxLA.org.

ISBN 978-9-40374-552-7

© 2025 2nd Edition by H. Fosdick

 This is a fully revised 2nd edition of the book with the same title published in 2005 by Wiley Publishing, Inc.

This updated and revised reprint is published under authority of clause 18 of the publishing contract dated July 8, 2004

between Wiley Publishing Inc., and Fosdick Consulting Inc., and subsequent letter dated December 14, 2015, affirming right

to reprint, from Fosdick Consulting Inc. to Wiley Publishing Inc., as pursuant to that contract.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO

REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF

THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING

WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY

MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND

STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS

SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER AND AUTHOR ARE NOT ENGAGED IN

RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL

ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE

SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING

HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A

CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE

AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY

PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT

INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN

WHEN THIS WORK WAS WRITTEN AND WHEN IT WAS READ.

TRADEMARKS: All trademarks are the property of their respective owners. The Rexx Language
Association is not associated with any vendor mentioned in this book.

About the Author

Howard Fosdick is an independent IT consultant who supports databases and operating systems. He's

written seven books and over 500 articles and frequently speaks at conferences. He co-founded the International

DB2 Users Group, the Midwest Database Users Group, and CAMP IT, and invented concepts like hype curves

and open consulting. While he’s coded in many programming languages, Rexx remains his favorite.

RexxInfo.org for everything Rexx.

 Download free guides --

 How to Build a Free Computer -- from Cast-offs

 How to Fix Computer Hardware

 Privacy in a Digital World

 … more ...

 from RexxInfo.org/guides

 Credits for 1
st
 Edition

Senior Acquisitions Editor Project Coordinator

Debra Williams Cauley Erin Smith

Development Editor Graphics and Production Specialists

Eileen Bien Calabro Jonelle Burns

Carrie Foster

Production Editor Lauren Goddard

Felicia Robinson Denny Hager

Joyce Haughey

Technical Reviewer Jennifer Heleine

Mark Hessling

Quality Control Technicians

Copy Editor John Greenough

Publication Services Leeann Harney

Jessica Kramer

Editorial Manager Carl William

Mary Beth Wakefield Pierce

Vice President & Executive Group Publisher Proofreading and Indexing

Richard Swadley TECHBOOKS Production Services

 Vice President and Publisher

 Joseph B. Wikert

Credits for 2
nd

 Edition

Content, Layout, Typesetting, Cover Designs: Howard Fosdick

Technical Reviewers: Many. Please see the Acknowledgments.

To Pippy, Vandy, Josie, Phoebe Jane, and Schnappsi.

 Foreword

Rexx is a very underrated programming language; elegant in design, simple syntax, easy to learn, use
and maintain, yet as powerful as any other scripting language available today.

In 1979, Mike Cowlishaw, IBM fellow, designed a “human-centric” programming language, Rexx.
Cowlishaw’s premise was that the programmer should not have to tell the interpreter what the
language syntax was in each program they wrote; that was the job of the interpreter. So unlike most
other programming languages, Rexx does not suffer from superfluous, meaningless punctuation
characters throughout the code.

Since the release of Rexx outside of IBM, Rexx has been ported to virtually all operating systems and
was formally standardised with the publishing of the ANSI Standard for Rexx in 1996. In late 2004, IBM
transferred their implementation of Object REXX to the Rexx Language Association under an Open
Source license. This event signalled a new era in the history of Rexx.

This book provides a comprehensive reference and programming guide to the Rexx programming lan-
guage. It shows how to use the most popular implementations of Rexx and Rexx external function pack-
ages and is suited to both the programmer learning Rexx for the first time as well as the seasoned Rexx
developer requiring a single, comprehensive reference manual.

Rexx has had a major influence on my life for the past 20 years since I wrote my first XEDIT macro in
Rexx. In the last 10 years I have maintained the Regina Rexx interpreter, ably assisted by Florian Große-
Coosmann, and in my remaining spare time have developed several Rexx external function packages
(and my XEDIT-like text editor, THE). However, like many developers of open source products, I have
never quite documented the products as completely as they deserve.

This is the book I would have liked to write if I had had the time. I’m glad Howard had the time!

Mark Hessling

 Author of Rexx/SQL, Rexx/gd, Rexx/DW,
Rexx/CURL, Rexx/Curses, Rexx/Wrapper,

Rexx/Trans,
The Hessling Editor (THE), Maintainer of Regina,

Rexx/Tk, PDCurses, http://www.rexx.org/

Foreword to the 2
nd

 Edition

The release of the 2nd edition of The Rexx Programmer’s Reference is a testament to the passion that

Howard and the majority of users have for Rexx and the longevity of the Rexx programming

language itself.

As software technologies change over the years, Rexx easily incorporates those new technologies

due to its exceptional design. This flexibility to change does not come at the expense of breakage of

existing code as is so common in most other programming languages. As a result, new program

development using Rexx is as viable now as it was when Rexx first appeared, and existing code still

runs unchanged as reliably now as when it was first developed.

This edition includes new content and changes that reflect the current state of Rexx.

I hope I’m around for the 3rd edition of The Rexx Programmer’s Reference!

Mark Hessling

Author of Rexx/SQL, Rexx/gd, Rexx/DW, Rexx/CURL, Rexx/Curses, Rexx/Wrapper, Rexx/Trans,

Rexx/JSON, The Hessling Editor (THE), and Maintainer of Regina, Rexx/Tk, and PDCurses.

www.Rexx.org

 Acknowledgments for the 1st Edition

Special thanks are due to Mark Hessling, who writes and maintains Regina Rexx and a wide variety of
open source Rexx tools and interfaces. As the technical reviewer for this book, Mark was an invaluable
source of recommendations for improvement as well as (oops!) corrections. His expertise and helpful-
ness were critical to improving this book.

Special gratitude is also due to the inventor of Rexx, Michael Cowlishaw. His advice and feedback were
very much appreciated.

In the process of developing this book, I wrote inquiries to many people without any prior introduction.
Each and every one of them responded helpfully. It was a great pleasure to meet people with such an
interest in Rexx, who so kindly answered questions and who greatly improved this book with their
suggestions.

I would like to give heartfelt thanks to María Teresa Alonso y Albado, W. David Ashley, Gil Barmwater,
Dr. Dennis Beckley, Alex Brodsky, Frank Clarke, Steve Coalbran, Ian Collier, Les Cottrell, Michael
Cowlishaw, Chip Davis, Prof. Rony Flatscher, Jeff Glatt, Etienne Gloux, Bernard Golden, Bob Hamilton,
Henri Henault , Stéphane Henault, Mark Hessling, Jack Hicks, IBM Corporation, René Vincent Jansen,
Jaxo Inc., Kåre Johansson, Kilowatt Software, Les Koehler, Laboratorios Bagó S.A., Joseph A. Latone,
Henri LeFebure, Michael Lueck, Antoni Levato, Dave Martin, Rob McNair, Patrick TJ McPhee, Dr. Laura
Murray, Walter u. Christel Pachl, Lee Peedin, Priscilla Polk, the Rexx Language Association, Pierre G.
Richard, Peggy Robinson, Morris Rosenbaum, Dr. Elizabeth Rovelli, David Ruggles, Roger E. Sanders,
Thomas Schneider, Theresa Stewart, UniForum Chicago, Vasilis Vlachoudis, Stan Wakefield, Keith
Watts, Dr. Sandra Wittstein, and Claudio Zomparelli.

Beyond those who provided technical advice and input for this book, I wish to thank my editors at John
Wiley and Sons, Inc. Eileen Bien Calabro greatly improved the readability of this book through her writ-
ing recommendations. Debra Williams Cauley provided insightful perspective and guidance on the
preparation and organization of the book. Finally, I thank Richard Swadley. I appreciate his confidence
and hope this book fulfills its promise both in the quality of its material and in its sales and distribution.

Special thank you to the following developers for permission to reprint or refer to their code (most of
these items fall under various open source licenses):

W. David Ashley—IBM Corporation, project leader of the Mod_Rexx project for scripts appearing in the
chapter on Apache programming with Mod_Rexx

Les Cottrell and the Stanford Linear Accelerator Laboratory—Authors of Rexx/CGI library for a script
illustrating their Rexx/CGI library

Henri Henault & Sons—Authors of the Internet/REXX HHNS WorkBench for a script and screen shot
illustrating the Internet/REXX HHNS WorkBench.

Mark Hessling—Developer/maintainer of Regina Rexx and many open source Rexx tools
for material on Rexx/gd and the reference tables of Rexx/Tk functions

Acknowledgments

Patrick TJ McPhee—Developer of RexxXML for the example program appearing in the chapter on
RexxXML

Pierre G. Richard, Joseph A. Latone, and Jaxo Inc.—Developers of Rexx for Palm OS for example scripts
appearing in the chapter on Rexx for Palm OS

Acknowledgments for the 2nd Edition

Thank you to René Jansen, President of the Rexx Language Association, for his advice and guidance in

putting together this updated edition.

Thank you also to all the members of the RexxLA and others who helped by giving advice or reviewing

this update: Grant Ward Able, Bill Backs, Janet Backs, Volker Bandke, Gil Barmwater, Michael Beer,

Wayne V. Bickerdike, Josep Maria Blasco, Frank Clarke, Michael Cowlishaw, Chip Davis, Marcel Dür,

Lionel B. Dyck, Tony Dycks, Dr Rony Flatscher, Mark L. Gaubatz, Eva Gerger, Sam Golob, Thomas

Grundmann-Kahr, Rob Hamilton, Jeffrey Hennick, Mark Hessling, Peter Jacob, Willy Jensen, Dave

Jones, Per Olov Jonsson, Mark McDonald, Rick McGuire, Shmuel (Seymour J.) Metz, Jeremy Nicoll,

Walter Pachl, Ross Patterson, Lee Peedin, Jochem Peelen, Priscilla Polk, Julian Reindorf, Marc Remes,

Pierre G. Richard, Larry Schacher, Martin Scheffler, Bruce Skelly, David Spiegel, Hobart Spitz, Bob Stark,

Erich Steinböck, Theresa Stewart, J. Leslie Turriff, Vasilis Vlachoudis, James Warren, and Jon Wolfers.

Thank you to those who contributed code for this new edition: Frank Clarke, Marcel Dür, Lionel B. Dyck,

Tony Dycks, Dr Rony Flatscher, Eva Gerger, Thomas Grundmann-Kahr, Mark Hessling, IBM Corporation,

Willy Jensen, Julian Reindorf, Pierre G Richard, and Vasilis Vlachoudis.

Also thank you to Marcel Dür, Eva Gerger, Thomas Grundmann-Kahr, and Julian Reindorf for the very
useful theses they wrote on running Rexx on Android while at the Vienna University of Economics and
Business. Congratulations to Dr Rony Flatscher for his success nourishing such a talented crop of budding
developers and software engineers.

Finally, thank you to Mark Hessling for his help and advice on both editions of this work, and for writing
the Forewords. Mark is the developer behind Regina Rexx and many of the excellent free tools that add key
functionality to Rexx. Several chapters in this book cover products he develops and supports.

And, of course, special thanks to the inventor of Rexx and NetRexx, Michael Cowlishaw.

An Open Source, Not-for-Profit Book

The author has directed that all monies made by this book be donated directly to the Rexx Language
Association, a non-profit entity incorporated in North Carolina, USA.

This book is published under the Creative Commons license BY-ND. You can freely use and distribute
this work, but with these restrictions:

❑ BY -- You can not change the authorship

❑ ND -- You must distribute this work in its entirety without altering its contents

Thank you for respecting my effort in writing this book by your cooperation.

 Contents

Foreword ix

Acknowledgments xi

Introduction xv

Part I 1

Chapter 1: Introduction to Scripting and Rexx 3

Chapter 2: Language Basics 21

Chapter 3: Control Structures 33

Chapter 4: Arrays 53

Chapter 5: Input and Output 67

Chapter 6: String Manipulation 79

Chapter 7: Numbers, Calculations, and Conversions 99

Chapter 8: Subroutines, Functions, and Modularity 109

Chapter 9: Debugging and the Trace Facility 133

Chapter 10: Errors and Condition Trapping 143

Chapter 11: The External Data Queue, or “Stack” 159

Chapter 12: Rexx with Style 169

Chapter 13: Writing Portable Rexx 189

Chapter 14: Issuing System Commands 209

Chapter 15: Interfacing to Relational Databases 229

Chapter 16: Graphical User Interfaces 255

Chapter 17: Web Programming with CGI and Apache 273

Chapter 18: XML and Other Interfaces 291

Part II 305

Chapter 19: Evolution and Implementations 307

Chapter 20: Regina 331

Chapter 21: Rexx/imc 345

Chapter 22: BRexx 359

Chapter 23: Reginald 385

Chapter 24: Programming Single Board Computers 421

Chapter 25: Android Programming 433

Chapter 26: r4 and Object-Oriented roo! 447

Chapter 27: Open Object Rexx 459

Chapter 28: Open Object Rexx Tutorial 475

Table of Contents

Chapter 29: IBM Mainframe Rexx 493

Chapter 30: NetRexx 515

Part III 529

Appendix A: Resources 531

Appendix B: Instructions 535

Appendix C: Functions 547

Appendix D: Regina Extended Functions 573

Appendix E: Mainframe Extended Functions 593

Appendix F: Rexx/SQL Functions 597

Appendix G: Rexx/Tk Functions 607

Appendix H: Tools, Interfaces, and Packages 615

Appendix I: Open Object Rexx: Classes 619

Appendix J: Mod_Rexx: Functions and Special Variables 623

Appendix K: NetRexx: Quick Reference 629

Appendix L: Retrieving System Information 635

Appendix M: Answers to “Test Your Understanding” Questions 637

Appendix N: How to Use EXECIO 657

Appendix O: How to Write ISPF Edit Macros 665

Appendix P: How to Run Rexx In Batch on Mainframes 671

Appendix Q: Rexx <--> Clist 677

Appendix R: Mainframe Rexx <--> ANSI Rexx 683

Appendix S: How to Code with JSON 689

Appendix T: Java Integration 695

Appendix U: The Secrets of PARSE 701

Appendix V: Array I/O 705

Appendix W: Job Interview Questions 709

Appendix X: Rexx <--> Bash 721

Appendix Y: Rexx <--> Python 725

Appendix Z: BRexx/370 for Mainframe Emulation 729

Index 733

xiv

Introduction

Of all the free scripting languages, why should you learn Rexx? Rexx is unique in that it combines power
with ease of use. Long the dominant scripting language on mainframes, it is definitely a “power”
language, yet it is also so easy to use that its popularity has expanded to every conceivable platform.
Today Rexx developers use the language on Windows, Linux, Unix, BSD, Macs, mainframes and many
dozens of other systems . . . and, there are many free and open source Rexx interpreters available.

Here’s the Rexx story in a nutshell:

❑ Rexx runs on every platform under nearly every operating system.

So, your skills apply anywhere . . . and your code runs everywhere.

❑ Rexx enjoys a strong international standard that applies to every Rexx interpreter . . .

from cell phones and handhelds to PCs to servers to mainframes.

❑ Rexx is as easy as JavaScript or PHP, yet about as powerful as Java or Perl.

❑ Rexx’s large user community means:

❑ Many free interpreters optimized for different needs and environments

❑ A vast array of free interfaces and tools

❑ Good support

❑ Rexx comes in object-oriented versions as well as versions that are Java-compatible
(one even runs on the Java virtual machine!)

You may be wondering why ease of use is so important in a programming language. A truly easy
language is easy to use, learn, remember, and maintain. The benefits to beginners are obvious. With
Rexx, you can start coding almost immediately. There are no syntax tricks or language details to
memorize before you begin. And, since Rexx is also a power language, you can rest assured that you
won’t run out of capability as you learn and grow with it. Read the first few chapters in this book, and
you’ll be scripting right away. Continue reading, and you’ll mature into advanced scripting before you
finish.

If you are an experienced developer, Rexx offers more subtle benefits. You will be more productive, of
course, as you free yourself from the shackles of syntax-driven code. More important is this: simplicity
yields reliability. Your error rate will decline, and you’ll develop more reliable programs. This benefit is
greatest for the largest systems and the most complicated scripts. Your scripts will also live longer because
others will be able to understand, maintain, and enhance them. Your clever scriptlets and application
masterpieces won’t die of neglect when someone else takes over and maintains your code.

Few easy languages are also powerful. Now, how does Rexx do that?

Introduction

xvi

 Power does not require coding complexity!

Rexx surrounds its small instruction set with an extensive function library. Scripts leverage operating
system commands, external interfaces, programs, and functions. Rexx is a “glue” language that ties it all
together. Yet the language has few rules. Syntax is simple, minimal, flexible. Rexx doesn’t care about
uppercase or lowercase or formatting or spacing. Rexx scripts don’t use special symbols and contain no
punctuation.

If you’ve worked in the shell languages, you’ll breathe a sigh of relief that you’ve found a powerful
language in which you can program now and then without trying to recall arcane language rules. If
you’ve struggled with the syntax of languages such as Bash, Korn, Awk, Perl, C++, or the C-shell, you’ll
enjoy focusing on your programming problem instead of linguistic peculiarities. And if you’ve ever had
to maintain someone else’s code written in one of those languages, well . . . you might really be thankful
for Rexx!

This book contains everything you need to know to get started with Rexx. How to freely download and
install an appropriate interpreter. How to program in standard "classic" Rexx and object-oriented Rexx.
How to program Windows, Linux, Unix, Macs, Androids, and mainframes. How to program in the Java
environment with object-oriented Rexx, or a Rexx-based language called NetRexx. How to script
operating system commands, control Web servers and databases and graphical user interfaces (GUIs)
and Extensible Markup Language (XML) and Apache and . . . you name it.

Everything you need is in this one book. It’s a Rexx encyclopedia. It teaches standard Rexx so that your
skills apply to any platform—from cell phones to desktops and laptops to midrange servers to
mainframes. Yet it goes beyond the basics to cover interface programming and advanced techniques.
The book starts out easy, based on coding examples throughout to make learning fast, simple, and fun.
But it’s comprehensive enough to cover advanced scripting as well. You can freely download all the
Rexx interpreters, tools, and interfaces it covers. Welcome to the world of free Rexx !

Who This Book Is For
This book is for anyone who wants to learn Rexx, or who already works with Rexx and wants to expand
his or her knowledge of the language, its versions, interfaces, and tools. How you use this book depends
on your previous programming or scripting knowledge and experience:

❑ If you are a complete beginner, you’ll find Rexx easy to learn. This book will tell you
everything you need to know. It’s a progressive tutorial based on coding examples, so you
won't get lost. You’ll be able to handle almost any programming problem by the end of the
book.

❑ If you are an experienced programmer, you can quickly learn Rexx by reading the tutorial
chapters. You’ll be programming immediately. As the book progresses into tutorials on
interfaces to databases, Web servers, GUIs, and the like, you’ll learn to program Rexx in the
context of the larger environment.

Introduction

xvii

❑ If you are a systems administrator or support person, you’ll learn a language that applies to a
wide variety of situations and can be a great tool. This book covers the interfaces, tools, and
varieties and implementations of Rexx you’ll need to know. It doesn’t stop with the basics. It
explores the advanced features you’ll want to use.

❑ If you already script Rexx, you will be able to expand your knowledge. You'll learn about free
Rexx interfaces and tools with which you may not be familiar. You’ll learn Rexx programming
in new environments, such as object-oriented scripting, scripting in the Java environment…
and even how to program Rexx in mainframe emulation on your personal computer. You’ll
find this complete reference the only Rexx book you’ll ever need.

What This Book Covers
This book teaches standard Rexx, quickly and simply. It emphasizes coding examples. It teaches you
what you need to know to work with Rexx on any platform. You’ll know a language that runs
everywhere and applies to almost any programming problem.

Beyond the Rexx language proper, this book covers all the major interfaces into Web servers, SQL
databases, GUIs, XML, JSON, graphics processing, and the like. It describes many of the free tools that
are available to make scripting with Rexx easier and more productive.

The book covers a number of free Rexx interpreters. Most meet the international standards for Rexx, yet
each adds its own special features and extensions. The book tells where to download each interpreter,
shows how to install it, and demonstrates how to leverage its particular strengths.

All the Rexx interpreters, tools, and interfaces this book covers are free or open source. One exception is
IBM mainframe Rexx, which comes bundled with IBM’s operating systems.

Ultimately, this book covers not only Rexx scripting, but the whole world of Rexx programming across
all environments and interfaces, and with all Rexx interpreters.

How This Book Is Structured
Take a quick look at the table of contents, and you will see that this book is broken down into three
broad sections:

❑ The book begins with a progressive tutorial that covers the basics of the Rexx language. These
eventually lead into more advanced scripting topics, such as how to write portable code and
using optimal coding style. The last chapters of this section (Chapters 15 through 18) cover the
most common Rexx interfaces and tools. These introduce and demonstrate how to code scripts
that interface to operating systems, SQL databases, Web servers, GUIs, XML, and other tools.

Introduction

xviii

Boxes like this one hold important, not-to-be-forgotten information that is directly
relevant to the surrounding text.

❑ The second section of the book describes the different Rexx interpreters and the unique
advantages of each. These chapters apply Rexx to different environments and include tutorials
on object-oriented Rexx, cell phone scripting, programming in Java environments, and many
other topics. All include complete example programs.

❑ Finally, the book contains a comprehensive reference section in its appendices. You won’t
need any other book to script Rexx.

 What You Need to Use This Book
You need nothing beyond this book. All its examples were all run using freely downloadable Rexx
interpreters, tools, and interfaces. The chapters tell you where to download any interpreters, tools, and
interfaces the book demonstrates, as well as how to set up and install them. Most of the examples in this
book were run under Windows and/or Linux, but you can work with this book with Rexx running any
operating system you like.

 Download the E x a m p l e C o d e
We recommend that you download the source code for all of the examples in this book from
www.RexxInfo.org. All our downloads are free and require no registration or email address.

Conventions
We’ve used a number of conventions throughout the book.

Concerning styles in the text:

❑ We italicize important words when we introduce them.

❑ We show keyboard strokes like this: Ctrl-A.

❑ We show filenames, URLs, variable names, and code within the text like this: my_file.txt.

❑ We present code in two different ways:

 In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present

context, or that has been shown before.

Introduction

xix

The Rexx language is not case-sensitive, so its instructions and functions can be encoded in uppercase,
lowercase, or mixed case. For example, the wordlength function can be encoded as wordlength,
WordLength, or WORDLENGTH. This book uses capitalization typical to the platforms for which its sample
scripts were written, but you can use any case you prefer.

 Reporting Errors

Thousands of programmers used the first edition of this book and reported no errors beyond a few typos.

Our goal is to match this level of quality in this 2nd edition. This new edition has been reviewed by many

experts from the Rexx Language Association.

However, updating for this new edition required working off the 1st edition's PDF files -- an error-prone

process, especially when working with code in text boxes and frequent font changes. So, try as we might to

catch them, errors introduced by typesetting could slip through.

If you find an error, please contact the author via his website at www.RexxInfo.org and report it. We'll

correct the digital edition immediately, and the print edition as soon as the next printing. Thank you for

your help in making this the best possible resource for Rexx programmers.

Online Resources
The website www.RexxInfo.org is a one-stop shop for all things Rexx. It offers free downloads for all
Rexx interpreters and tools, articles, sample code, information, links, and other resources. Its reference
section offers quick online lookup for all Rexx language instructions, functions, classes, and methods, and
also a full set of free manuals for all Rexx products, including all IBM manuals.

Appendix A on "Resources" describes many other good sources of Rexx information.

What’s New in the 2nd Edition?
This is a fully revised 2nd edition of a book originally published in 2005.

Completely new content in this edition includes: the Introduction; chapters 1, 19, 22, 24, 25,
and 27; and, appendices A, I, L, N, O, P, Q, R, S, T, U, V, W, X, Y, and Z. Of course, all other
content has been updated as appropriate.

 Due to the typesetting software used in preparing this book, in a few places in the text, quotation

 marks might appear as forward-leaning or backward-leaning. Please consider the leftmost

 examples as equivalent to the vertical quotation marks that Rexx requires:

 `Hello` ‘Hello’ `Hello’ “Hello” Correct: 'Hello' "Hello"

 Only vertical single or double quotation marks will run correctly when coded in a Rexx program.

Introduction

xx

Much new material has been added in this edition including:

❑ Java integration

❑ Using JSON

❑ Array I/O

❑ Advanced parsing

❑ Android programming

❑ Rexx on single board computers

❑ SQLite programming

❑ Equivalence charts for Rexx <--> Bash

❑ Equivalence charts for Rexx <--> Python

❑ Sample job interview questions

Readers have also asked for more coverage of mainframe Rexx, so we've added:

❑ Using EXECIO

❑ How to write ISPF edit macros

❑ How to run Rexx in batch

❑ Rexx on personal computers that emulate mainframes

❑ Equivalence charts for IBM mainframe REXX <--> ANSI-1996 standard Rexx

❑ Equivalence charts for Rexx <--> Clist

Much new content has been provided in new appendices, rather than chapters, due to typesetting constraints.

Among Rexx’s great benefits are its strong language standards and remarkable stability. Thus it hasn’t been

necessary to modify or update the book's code examples. The proof is in the product -- you can rely on Rexx to

run mature code without difficulty or disruption.

Note that this edition does not always reflect the latest names of a few rebranded products. For example, it may

refer to the Db2 database under its older name of "DB2".

And remember that website addresses do change. If one this book suggests becomes obsolete, just use your

search engine to find the material you seek.

We've retained coverage of a few topics that are less important than previously. This includes the

chapters on the out-of-support interpreters Reginald, r4, and roo!, and the brief discussion of

Windows CE. We've kept this content because some readers requested it. It's clearly marked in

the text. If it is not of interest to you, please just skip it.

Part I

Introduction to Scripting
and Rexx

Overview
Before learning the Rexx language, you need to consider the larger picture. What are scripting
languages? When and why are they used? What are Rexx’s unique strengths as a scripting
language, and what kinds of programming problems does it address? Are there any situations
where Rexx would not be the best language choice?

This chapter places Rexx within the larger context of programming technologies. The goal is
to give you the background you need to understand how you can use Rexx to solve the
programming problems you face.

Following this background, the chapter shows you how to download and install the most popular
free Rexx interpreter on your Windows, Linux, Unix, BSD, or Apple computer. Called Regina, this
open-source interpreter provides a basis for your experiments with Rexx as you progress in the
language tutorial of subsequent chapters.

Note that you can use any standard Rexx interpreter to learn Rexx. So, if you have some other
Rexx interpreter available, you are welcome to use it. We show how to download and install
Regina for readers who do not already have a Rexx interpreter installed, or for those who would
like to install an open-source Rexx on their PC.

Why Scripting?
Rexx is a scripting language. What’s that? While most developers would claim to “know one when
they see it,” a precise definition is elusive. Scripting is not a crisply defined discipline but rather
a directional trend in software development. Scripting languages tend to be:

❑ High level — Each line of code in a script produces more executable instructions — it
does more — than an equivalent line encoded in a lower-level or “traditional”
language.

Chapter 1

4

❑ Glue languages — Scripting languages stitch different components together — operating
system commands, graphical user interface (GUI) widgets, objects, functions, or service
routines. Some call scripting languages glue languages. They leverage existing code for higher
productivity.

❑ Interpreted — Scripting languages do not translate or compile source code into the
computer’s machine code prior to execution. No compile step means quicker
program development.

❑ Interactive debugging — Interpreted languages integrate interactive debugging. This
gives developers quick feedback about errors and makes them more productive.

❑ Variable management — Higher-level scripting languages automatically manage variables.
Rexx programmers do not have to define or “declare” variables prior to use, nor do they
need to assign maximum lengths for character strings or worry about the maximum number
of elements tables will hold. The scripting language handles all these programming details.

❑ Typeless variables — Powerful scripting languages like Rexx even relieve the programmer of
the burden of declaring data types, defining the kind of data that variables contain. Rexx
understands data by usage. It automatically converts data as necessary to perform
arithmetic operations or comparisons. Much of the housekeeping work programmers
perform in traditional programming languages is automated. This shifts the burden of
programming from the developer to the machine.

Figure 1-1 contrasts scripting languages and more traditional programming languages.

On the downside, scripting requires greater machine resources than hand-coded programs in
traditional, compiled languages. But in an era where machine resources are less expensive than ever and
continue to decline in price, trading off expensive developer time for cheaper hardware makes sense.

 Introduction to Scripting and Rexx

5

YearMake Processor SpeedMemory Operating
System

Rexx Clauses per
Second

Here’s how hardware addresses scripting performance. The original IBM PC ran an 8088 processor at
4.77 MHz. It executes less than a hundred clauses or statements of a Rexx script every second. Current
personal computers execute millions of Rexx clauses per second.

Just for fun, this table shows how much faster a standard Rexx benchmark script runs on typical PCs
at various times. Later in this chapter, we’ll show you how to benchmark your own computer against
the numbers in this table:

1982 IBM PC 8088 4.77 Mhz 320 KB DOS 6.2 Mansfield 70

Zenith 8088-2 8 Mhz 640 KB DOS 6.2 Mansfield 95

1988 Clone 386/DX 25 Mhz 2 MB DOS 6.2 BRexx 3,600

1993 Clone 486/SX 25 Mhz 8 MB Windows 3.1 BRexx 6,000

 1998 Gateway Pentium II 266 Mhz 512 MB Red Hat 8 Regina 180,000

 2005 Clone Celeron 2.6 Ghz 1 GB Windows XP Regina 1,100,000

2010 Lenovo Core2Duo 2*3.0Ghz 4 GB Windows 7 Regina 4,545,455

 2014 Dell i5-3350p 4*3.1Ghz 8 GB Windows 8.1 ooRexx 3,030,303

 2017 HP 8570p i7-3520m 8*2.9Ghz 8 GB Win 7 Ent. ooRexx 7,363,893

2019 Dell Vostro i7-3770 8*3.4Ghz 8 GB Linux Mint 19 BRexx 8,498,672

 2022 Gigabyte amd3900x 3.8 Ghz 32 GB Win 10 Pro Regina 9,250,694

 2023 Acer amd6800u 2.7 Ghz 16 GB Windows 11 ooRexx 13,636,364

2023 Apple M1 3.2 Ghz 16 GB Ventura 13.3.1 Regina 22,233,751

Source- author’s hands-on tests and contributions by members of the Rexx Language Association.

The bottom line is that the program that consumes over an hour on a decades-old 8088 runs in a split
second on a modern desktop. While the table ignores subtle factors that affect performance, the trend
is clear. For most programming projects, trading machine cycles for labor costs makes sense. Why not
use a more productive tool that shifts the burden to the machine?

Labor-saving benefits extend beyond program development to maintenance and enhancement. Experts
like T. Capers Jones estimate that up to 75 percent of IT labor costs are devoted to program maintenance.
An easy-to-read, easy-to-maintain scripting language like Rexx saves a great deal of money.

Hardware performance increases geometrically, while the performance differential
between scripting and compiled languages remains constant.

Chapter 1

6

Sometimes, you’ll hear the claim that scripting languages don’t support the development of large,
robust, “production-grade” applications. Years ago, scripting languages were primitive and this charge
rang true. But no longer. IT organizations routinely develop and run large applications written in Rexx
and other scripting languages. The author has run across many large production business applications
consisting of tens of thousands of lines of code. You can run an entire enterprise on scripts.

Why Rexx?
The distinguishing feature of Rexx is that it combines ease of use with power. Its goal is to make scripting
as easy, fast, reliable, and error-free as possible. Many programming languages are designed for
compatibility with older languages, the personal tastes of their inventors, the convenience of compiler-
writers, or machine optimization. Rexx ignores extraneous objectives. It was designed from day one to
be powerful yet easy to use.

One person invented Rexx and guided its development: Michael Cowlishaw of IBM’s UK laboratories.
Cowlishaw gave the language the coherent vision and guiding hand that ambitious software projects
require to succeed. Anticipating how the Internet community would cooperate years later, he posted
Rexx on the internet of its day, IBM’s VNET, a network of tens of thousands of users. Cowlishaw
solicited and responded to thousands of emailed suggestions and recommendations on how people
actually used early Rexx. The feedback enabled Cowlishaw to adapt Rexx to typical human behavior,
making Rexx a truly easy-to-use language.

Ease of use is critical — even to experienced developers — because it leads to these benefits:

❑ Low error rate — An easy-to-use language results in fewer bugs per program. Languages that
rely on arcane syntax, special characters and symbols, and default variables cause more errors.

❑ Reliability — Programs are more reliable due to the lower error rate.

❑ Longer-lived code — Maintenance costs dictate the usable life span of code. Rexx scripts are
much easier to maintain than scripts written in languages that rely on special characters and
complex syntax.

❑ Reduced cost — Fast program development, coupled with a low error rate and high reliability,
lead to reduced costs. Ease of maintenance is critical because up to three-quarters of IT
professionals engage in maintenance activities. Code written by others is easier to understand
and maintain if it is written in Rexx instead of syntax-driven languages like the Linux shell
languages or Perl or Awk or C++. This reduces labor costs.

❑ Higher productivity — Developer productivity soars when the language is easy to work with.
Scripting in Rexx is more productive than coding in either lower-level compiled languages
or syntax-based shell languages.

❑ Quicker testing — Interpretive scripting languages lend themselves to interactive testing.
Programmers get quick feedback and can easily trace program execution. Combined with
the low error rate of an easy-to-use language, this means that less test time is required.

❑ Easy to learn — An easy-to-use language is easier to learn. If you have programmed in any

other programming or scripting language, you can pick up Rexx very quickly.

 Introduction to Scripting and Rexx

7

❑ Easy to remember — If you write only the occasional program, you’ll find Rexx easy to
remember. Languages with special characters and quirky syntax force you to review
their rules if you only script now and then.

❑ Transfer skills — Since Rexx is easy to work with, developers find it easy to adapt to platform
differences or the requirements of different interfaces. Rexx has a strong platform-
independent standard. As well, many Rexx interfaces and tools are themselves cross-platform
products.

Power and Flexibility
That Rexx is easy to learn and use does not mean that it has limited features or is some sort of
“beginner’s language.” Rexx competes, feature for feature, with any of the other major scripting
languages. If it didn’t, it certainly would not be the primary scripting language for mainframes, nor
would it have attained the widespread use it enjoys today on so many other platforms. Nor would there
be thousands of Rexx users distributed around the world.

Ease of use and power traditionally force language trade-offs. It is easy to get one without the other, but
difficult to achieve both. Rexx is specifically designed to combine the two. It achieves this goal through
these principles:

❑ Simple syntax — Some very powerful languages rely extensively on special symbols,
nonobvious default behaviors, default variables, and other programming shortcuts. But there
is no rule that power can only be achieved in this manner. Rexx eschews complex “syntax
programming” and encourages simpler, more readable programming based on English-
language keyword instructions and functions.

❑ Small command set, with functions providing the power — Rexx has a small core of only two dozen
instructions. This simplicity is surrounded by the power of some 70 built-in functions. A well-
defined, standard interface permits Rexx to call upon external function libraries. This allows
you to extend the language yourself, and it means that many open-source extensions or
libraries of routines are freely available. Rexx scripts also wield the full power of the operating
system because they easily issue operating system commands.

❑ Free-form language — Rexx is not case-sensitive. It is a free-form language and is about as
forgiving concerning placement of its source text as a programming language can be. This
permits programmers to self-describe programs by techniques such as indentation, readable
comments, case variations, and the like. Rexx relieves programmers from concern about
syntax and placement, and lets them concentrate on the programming problem they face.

❑ Consistent, reliable behavior — Rexx behaves “as one would assume” at every opportunity. Its
early user community provided feedback to one “master developer” who altered the
language to conform to typical human behavior. As the inventor states in his book defining
Rexx: “The language user is usually right.” Rexx was designed to encourage good programming
practice and then enhanced by user feedback to conform to human expectations.

❑ Modularity and structured programming — Rexx encourages and supports modularity and
structured programming. Breaking up large programming problems into discrete pieces and
restricting program flow to a small set of language constructs contributes greatly to ease of
use and a low error rate when developing large applications. These principles yield simplicity
without compromising power. (Chapters 3 and 8 explore them.)

Chapter 1

8

❑ Fewer rules — Put the preceding points together, and you’ll conclude that Rexx has fewer
rules than many programming languages. Developers concentrate on their programming
problem, not on language trivia.

❑ Standardization — While there are many free Rexx interpreters, nearly all adhere to the Rexx
standards. This makes your scripts portable and your skills transferable. A standardized
language is easier to use than one with numerous variants. Rexx has two strong, nearly
identical standards. One is defined in the book The Rexx Language, or TRL-2, by Michael
Cowlishaw (Prentice-Hall, 1990, second edition). The other is the 1996 standard from the
American National Standards Institute, commonly referred to as ANSI-1996. The ANSI-1996
specification is a true superset of TRL-2 that adds just a few important language features.

Free and Open Source

As we’ll describe below, you can select from a good number of different Rexx interpreters. They come in

both open source and commercial versions. If you prefer a free and open source (or FOSS) product, there

is always a Rexx interpreter available for your platform.

The vast majority of Rexx tools are free and open source, too. Hundreds of them cover every

conceivable need, from graphical user interfaces to databases, from telecommunications to

development environments, to almost every other category you can imagine.

Universality
Rexx is a universal language. It runs on every platform, from cell phones and handhelds, to laptops and
desktops, to servers of all kinds, all the way up to the largest mainframes and supercomputers.

Here are the many platforms on which free Rexx interpreters run:

❑ All versions of Windows, Linux, Unix, BSD, Apple operating systems and macOS, and all
IBM operating systems.

❑ Cell phones and tablets running Android and other various kinds of handhelds

❑ Single board computers and embedded systems applications

❑ IBM servers (i-series, pSeries, POWER/PowerPC, Linux for Z, OpenEdition/Unix System
Services), Amiga-derived systems (AmigaOS 4 or AOS4, MorphOS, AROS, aeROS or
AEROS), DOS-family systems (MS-DOS, PC-DOS, FreeDOS, all others), OS/2-derived systems
(eCS and ArcaOS), plus OpenVMS, QNX, and others

❑ Many other lesser-used platforms too numerous to list

 Introduction to Scripting and Rexx

9

The benefits of a universal language are several. Among them:

❑ Your skills apply to any platform

❑ Your scripts run on any platform

Here’s an example. A site that downsizes its mainframes to Linux servers could install free Rexx on the
Linux machines. Rexx becomes the vehicle to transfer personnel skills, while providing a base for
migrating scripts.

As another example, an organization migrating from procedural to object-oriented programming (OOP)
could use free Rexx as its cross-platform entry point into OOP. Standard, procedural Rexx is a true subset
of object-oriented Rexx.

A final example: a company runs a data center with mainframes and Unix servers, uses Windows on the
desktop, and programs Android tablets for field agents. Rexx runs on all these platforms, making
developers immediately productive across the whole range of company equipment. Rexx enables a
mainframer to program a handheld, or Windows developer to script under Unix.

A standardized scripting language that is freely available across a wide range of systems yields
unparalleled skills applicability and code portability.

Typical Rexx Applications
Rexx is a general-purpose language. It is designed to handle diverse programming needs. Its power
gives it the flexibility to address almost any kind of programming problem. Here are examples.

❑ As a “glue” language — Rexx has long been used as a high-productivity “glue” language for
stitching together existing commands, programs, and components. Rexx offers a higher-level
interface to underlying system commands and facilities. It leverages services, functions,
objects, widgets, programs, and controls.

❑ Automating repetitive tasks — Rexx scripts automate repetitive tasks. You can quickly put
together little scripts to tailor the environment or make your job easier. Rexx makes it easy
to issue commands to the operating system (or other environments or programs) and react
to their return codes and outputs.

❑ Systems administration — Rexx is a high-level, easy-to-read, and easy-to-maintain way to script
system administration tasks. By its nature, systems administration can be complex.
Automating it with an easily understood language raises system administration to a higher,
more abstract, and more manageable level. If you ever have to enhance or maintain systems
administration scripts, you’ll be thankful if they’re written in Rexx instead of some of the
alternatives!

❑ Extending the operating system — You typically run Rexx scripts simply by typing their name
at the operating system’s command prompt. In writing scripts, you create new operating
system “commands” that extend or customize the operating system or programming
environment.

Chapter 1

10

❑ Application interfaces — Rexx scripts can create flexible user interfaces to applications
programmed in lower-level or compiled languages.

❑ Portable applications — Rexx’s standardization and extensive cross-platform support make it a
good choice for applications that must be ported across a range of systems. Its readability and
ease of maintenance make it easy to implement whatever cross-platform enhancements may
be desired. For example, while Rexx is the same across platforms, interfaces often vary.
Standardizing the scripting language isolates changes to the interfaces.

❑ Prototyping and exploratory programming — Since Rexx supports quick development, it is ideal
for developing prototypes, whether those prototypes are throw-aways or revisable. Rexx is
also especially suitable for exploratory programming or other development projects apt to
require major revision.

❑ Personal programming — An easy-to-use scripting language offers the simplicity and the
speedy development essential to personal programming. PCs and handheld devices often
require personal programming.

❑ Text processing — Rexx provides outstanding text processing. It’s a good choice for text
processing applications such as dynamically building commands for programmable
interfaces, reformatting reports, text analysis, and the like.

❑ Handheld devices — Small devices require compact interpreters that are easy to program.
Rexx is useful for handheld devices of various kinds, including mobile and smart phones.

❑ Migration vehicle — Given its cross-platform strengths, Rexx can be used as a migration
vehicle to transfer personnel skills and migrate legacy code to new platforms.

❑ Macro programming — Rexx provides a single macro language for the tools of the
programming environment: editors, text processors, applications, and other languages.
Rexx’s strengths in string processing play to this requirement, as does the fact it can easily
be invoked as a set of utility functions through its standardized application programming
interface, or API.

❑ Embeddable language — ANSI Rexx is defined as a library which can be invoked
from outside applications by its standard API. Rexx is thus a function library that
can be employed as an embeddable utility from other languages or systems.

❑ Mainframe support – Rexx is the default scripting language for several operating
systems. Mainframe systems like z/OS, z/VM, and VSE/n are examples. Not only is
Rexx the most popular scripting language on these systems, it is also the only high-
level language that links into many subsystems essential to managing and
administering them.

❑ Mathematical applications — Rexx performs computations internally in decimal arithmetic,
rather than in the binary or floating-point arithmetic of most programming languages. The
result is that Rexx always computes the same result regardless of the underlying platform.
And, it gives precision to 999999 decimal places! But Rexx is not suitable for all
mathematical applications. Advanced math functions are external add-ins rather than
built-in functions for most Rexx interpreters, and Rexx performs calculations slowly
compared to compiled languages optimized for these tasks, such as Fortran or Julia.

 Introduction to Scripting and Rexx

11

What Rexx Doesn’t Do

There are a few situations where Rexx may not be the best choice.

Rexx is not a systems programming language. If you need to code on the machine level, for example, to
write a device driver or other operating system component, Rexx is probably not a good choice. While
there are versions of Rexx that permit direct memory access and other low-level tasks, languages like
C/C++ or assembler are more suitable. Standard Rexx does not manipulate direct or relative addresses,
change specific memory locations, or call PC interrupt vectors or UEFI/BIOS service routines.

Rexx is a great tool to develop clear, readable code. But it cannot force you to do so; it cannot save you
from yourself. Chapter 12 discusses “Rexx with style” and presents simple recommendations for
writing clear, reliable code.

Scripting languages consume more processor cycles and memory than traditional compiled languages.
This affects a few projects. An example is a heavily used transaction in a high-performance online trans-
action processing (OLTP) system. The constant execution of the same transaction might make it worth
the labor cost to develop it in a lower-level compiled language to optimize machine efficiency.

Another example is a heavily computational program in scientific research. Continual numeric
calculation might make it worthwhile to optimize processor cycles through a computationally oriented
compiler.

A final example might be where you’re writing part of an operating system that is in constant use. In
this case it might be worth investing the extra effort to develop the code in a low-level language like an
assembler, or at least a fast compiled language (like C), to gain maximum efficiency and the quickest
possible execution time.

In most other situations, for most other applications, our profession has reached the consensus that
scripting languages are plenty fast enough. And they are so much more productive! This is why
the shift to scripting has been one of the biggest software trends since the turn of the century.

If you’re interested in reading further about the evolution towards scripting, chapter 19 explores this
in some detail.

Figure 1-2 summarizes the kinds of programming problems to which Rexx is best suited as well as those
for which it may not be the best choice.

Chapter 1

12

Which Rexx?
There are many free implementations of what we refer to as standard or classic Rexx. This is Rexx as
defined by the TRL-2 or ANSI standards mentioned earlier. There are also two object-oriented supersets
of classic procedural Rexx. And, there is NetRexx, the free Rexx-like language that runs in a Java Virtual
Machine and presents a complementary or an alternative to Java for developing applications. Which
Rexx should you use?

The first half of this book teaches classic Rexx. It applies to any standard Rexx interpreter on any platform.
Once you know standard Rexx you can easily pick up the extensions unique to any Rexx interpreter.
You can also easily learn interface programming, how to use Rexx tools and packages, object-
oriented Rexx, NetRexx, or any Rexx variant. After all, the whole point of Rexx is ease of learning!

This table summarizes the major Rexx interpreters. All are free and available at no cost (except for IBM's Rexx

Compiler). Most are open source, while a few are proprietary and come bundled with an operating system.

They are distributed either as easy-to-install packages, directly executable binaries, or source code.

 Introduction to Scripting and Rexx

13

Interpreter Platforms Cost & Licensing

Regina Nearly everywhere Free, open source, GNU Library or

(except mainframes) LGPLv2

Open Object Rexx Windows, Linux, Unix, BSD, Free, open source, GPLv2, CPL 1.0

(aka “ooRexx”) macOS

Open Object Rexx for Android Android Free, open source, Apache 2.0

(aka "ooRexx for Android")

BRexx Linux, Unix, BSD, macOS, Free, open source, GPLv2

Android, Windows, DOS

BRexx370 Mainframes Free, open source, GPLv2

Rexx/imc BSD, Unix, Linux Free, open source, no warranty

IBM REXX Mainframes Bundled, Proprietary license

IBM REXX Compiler Mainframes Proprietary license

Rexxoid Android Free, open source

(aka “Rexx for Android”)

NetRexx Anywhere with a Java Free, ICU License

Virtual Machine

ARexx Amiga-derived systems Free, bundled, license varies

cREXX z/VM, others soon Free, MIT license

R4 (out of support) Windows Free. Limited warranty

Roo! (out of support) Windows Free. Limited warranty

Reginald (out of support) Windows Free. No warranty

All these interpreters meet the TRL-2 Rexx language standard. The single exception is NetRexx, which is
best termed a “Rexx-like” language. Any standard Rexx you have installed can be used for working with
the sample code in the first half of this book. This includes all the previously listed interpreters (except
NetRexx), as well as standard Rexx interpreters bundled with mainframe or other operating systems.

To get you up and programming quickly, we defer closer consideration of the unique strengths of the
various Rexx interpreters and the differences between them.

(If you need to know more right now, skip ahead to Chapter 19. That chapter discusses the evolution
of Rexx and the roles it plays as a scripting language. It describes all the free Rexx interpreters above
and presents the strengths of each. Chapters 20 through 30 then show how and where to download
and install each Rexx interpreter. They describe the unique features of each and demonstrate many of
them in sample scripts.)

If you’re new to Rexx, we recommend starting with Regina Rexx. Regina Rexx is a great place to start for
several reasons:

❑ Popularity — Regina is the most widely used free Rexx. Its large user community makes
it easy to get help on public forums. More interfaces and tools are tested with Regina
than any other Rexx implementation.

Chapter 1

14

❑ Runs anywhere — Rexx is a platform-independent language, and Regina proves the
point. Regina runs on almost any operating system including those in these families:
Windows, Linux, Unix, BSD, macOS, and many lesser-used systems.

❑ Meets all standards — Regina meets all Rexx standards including the TRL-2
and ANSI- 1996 standards.

❑ Well Documented — Regina comes with complete documentation that precisely
and fully explains the product.

❑ Open source — Regina is free and open source and distributed under the GNU Library
General Public License. A few Rexx interpreters are free but not open source, as shown
in the preceding table.

The code examples in this book all conform to standard Rexx and were tested using Regina Rexx under
Windows and/or Linux. Run these scripts under any standard Rexx in any environment. A few scripts
require a specific operating system. For example, those in Chapter 14 illustrate how to issue operating
system commands and therefore are system-specific. Other scripts later in the book use specific open-
source interfaces, tools, or interpreters. Where we present examples that run only in certain environments,
we’ll point it out.

To get you ready for the rest of the book, the remainder of this chapter shows you how to download
and install Regina under Windows, Linux, Unix, BSD, and macOS. You need only install Regina if you
don’t already have access to a Rexx interpreter.

Downloading Regina Rexx

For a free download of Regina Rexx, go to the Regina project homepage at SourceForge at
https://sourceforge.net/projects/regina-rexx/. Click on the Files tab on the horizontal menu
to access the downloads page at https://sourceforge.net/projects/regina-rexx/files/.

From the Files page, you can click on regina-documentation and download Regina's two PDF product
manuals. You'll probably want to download the files for the latest product release.

Also on the Files page, you can also click on regina-rexx to download the product itself. Again, you'll
encounter a list of releases. Pick the latest one.

Now you'll face a screen with a long list of downloadable files. (There are so many files because Regina
runs on so many different platforms.) Scroll down and you'll see the files grouped by operating
system. You'll see groupings for Windows, Linux, macOS, BSD, and Others.

Once you find the group of downloads for your operating system, it's a simple matter of selecting
which download matches your specific computer.

Okay, let's walk through the exact install steps you need to follow to install for Windows, Linux, and
other systems like macOS, BSD, and Unix.

 Introduction to Scripting and Rexx

15

Installing Regina On Windows

From the list of downloadable files at the SourceForge project webpage, scroll down to the Windows

group.

Your goal is to select the correct Windows download for your computer. You want each column in the
table to match your computer's specifications.

Select the entry in the Architecture column that matches your computer: x86_64 for 64-bit Windows on
Intel processors, x86 for 32-bit Windows on Intel processors, or arm64 for 64-bit ARM processors. The
Format column tells what kind of install format you're downloading.

For example, for my computer I selected the file Regina w64.exe (the underscores represent a variable
product release number). That's for 64-bit Windows on Intel computers. The Format entry describes
this as a "Self-installing executable." Perfect! That makes for a very easy Windows installation.

Once you've downloaded the proper file, double-click on it to start the installation. You'll proceed
through a standard Windows install. Accept the defaults all the way through.

This installs Regina's Demos, Development Kit, and Documentation, along with the interpreter itself. It
requires very little space (less than ten megabytes).

The Windows default install directory will be C:\ Program Files\rexx.org\Regina for 64-bit Intel
architecture and ARM processors, and C:\Program Files (x86)\rexx.org\Regina for 32-bit Intel
architecture processors.

The default install will also add the Regina installation directory to your PATH variable and include
the REGINA_HOME environmental variable. These settings enable you to easily run Regina scripts
without any additional steps.

Another screen will prompt you for the filename extensions for your Regina scripts. Traditionally,
Regina scripts use filename extension of .rexx, so select that.

A final screen asks whether you want to install and optionally auto-start the Regina Stack Service. The
stack is a general-purpose data structure that Regina programs can use to pass or temporarily store data.
(Chapter 11 describes the stack in detail.) For learning purposes, it's convenient to install this service.

That's it! You're done. Now, you can navigate to your Windows' installed Program List and see the

ReginaRexx entry. Beneath it will appear its list of components.

Remember those computer benchmarks on page 5? Let’s benchmark your computer and see how it
compares. This will also verify that Regina is installed and working properly.

Chapter 1

16

Select ReginaRexx from the Windows Program list. Under the ReginaRexx entry, pick Regina Rexx Demos.
Then click on the program Rexxcps. The program will run in a command window and give you a
benchmark you can directly compare to those on page 5.

So, you can run any Rexx program with the file extension of .rexx simply by double-clicking its filename.

Or you can run programs from the command line. Assuming you've navigated to the directory containing
the program you want to run, (or that your PATH environmental variable contains that directory), you can
enter its full filename to run it: rexxcps.rexx

The filename extension of .rexx tells Windows to run the file using Regina Rexx. Or you can run a file
by explicitly invoking the Regina interpreter. Since you've already set the filename extension within
Windows, you can either specify the full or partial filename. Either will work:

regina rexxcps.rexx or regina rexxcps

What about entering just the filename, but without its extension? Windows can't run this program
because it doesn't know it should invoke Regina to run it. So this will not work: rexxcps

Installing Regina on Linux / Unix / BSD / macOS

There are several ways to install Regina on Linux and similar computers, such as those running macOS,

Unix, and BSD. Perhaps the quickest and easiest is to use your distribution’s package manager, its software

interface for installing and removing software products.

Example package managers include Ubuntu’s Software Center, the Synaptic Package Manager, APT, DNF,

YUM, and ZYPP. The one you have available depends on which Linux distribution you run. All have easy-

to-use GUI interfaces.

Most Linux package managers connect to large repositories of software products. Just search for Regina in

that list of installable programs, and then select and install Regina using the package manager’s graphical

interface.

In most cases, the package manager will direct you to download two Regina files. One is for the

interpreter itself, and the other is for its library. For example, using Synaptic Package Manager directed

me to download the files regina-rexx, and its library, libregina3. (The exact file names may vary

in your case.) The point is that the package manager will often automatically direct you to download

more than a single file to install Regina. Just download these files and double-click to install them.

If you're on a Mac and use HomeBrew, you can install simply by: brew install regina-rexx

Installing Regina with your operating system’s package manager is quick and easy. But it does have one

possible downside. Sometimes repositories don’t contain the latest release of the software.

 Introduction to Scripting and Rexx

17

Thus, you may want to install Regina directly from its permanent project homepage at

SourceForge.net. This is the same SourceForge webpage mentioned in the above discussion on

“Installing Regina on Windows.” The web address for downloading Regina files is:
https://sourceforge.net/projects/regina-rexx/files/.

Once there, you can download the product documentation by selecting the directory regina-

documentation, and the product itself by choosing regina-rexx.

We recommend downloading the two Regina manuals available under the regina-documentation

directory. You may have need of them later.

In the regina-rexx directory, you’ll want to select the current release. There you'll view a very long product

list. Scroll down to the section labelled Linux. This reduces the downloads to a more manageable list.

To find the file to download, scroll through the list under the label Operating System and locate yours.

(If you can't find an exact match, pick the one closest to your system. For example, someone running a

Debian-based distribution that is not explicitly listed could use the Debian packages.)

Once you’ve located your operating system, ensure that the Architecture and 32bit or 64bit columns

match your system. The rightmost column will then tell you which kind of package is involved: Debian,

RPM, Alpine, or whatever.

Now you’ll need to download and install two packages. One will be Regina’s library package, while the

second is the interpreter itself.

Here’s an example. At the time of writing, I ran Linux Mint 21.2. I found that Linux Mint did not appear in

the list of Operating Systems in the Linux section. A quick web search showed that Mint 21.x is based on

Ubuntu 22. So I downloaded the files for Ubuntu 22. They worked fine.

Just as when you install via your Linux package manager, you’ll likely need to install two files. I installed

these two (the underscores contain the variable product release numbers):

libregina3 -amd64-Ubuntu-22.04.deb

regina-rexx -amd64-Ubuntu-22.04.deb

As always with package manager files, you just double-click to install them. So first I installed the library

.deb, then next, the regina-rexx package. Done!

Afterwards, you'll want to test the install to ensure it worked correctly. Let's run the benchmarking

program that produced the table on page 5. You can benchmark your computer against those in the table.

The benchmarking program is called rexxcps. With the default Regina extension of .rexx, that means the

full name of this program is rexxcps.rexx. Use your operating system's Search function to locate this

program. Then open a terminal window, change to the directory where it resides, and execute it:

regina rexxcps or regina rexxcps.rexx

Chapter 1

18

If Regina can’t find the program to run it, you can run it by specifying that it resides in the current

directory:

regina ./rexxcps or regina ./rexxcps.rexx

Manual Installation From Source Code

If the simple "package install" we describe above didn't work for you, or if you have an uncommon
system not included in Regina's list of package installs, here we’ll describe a simple, generic approach
that will work for almost any Unix-derived operating system, including the macOS.

Where slight differences exist between systems, the Regina Install Notes will tell you what you need to
know. These typically reside in INSTALL* or README* files. They download with the product. Be sure to
read those instructions!

To install Regina under any Linux, Unix, BSD, or macOS operating system, use the root user ID and
download the source file into an empty directory.

The source file will be compressed. It will thus end in one of these file name extensions:

.tar.bz2, .tar.gz, .tgz, .tar, or .zip. To uncompress this file, just double-click on the file name.

If double-clicking produces a second compressed file (such as a .tar file), double-click on that file.

You'll know you're done decompressing when you see a long list of files being created. (So,
decompressing might be either a one-step or two-step process, depending on what kind of compressed
file you initially downloaded.)

Now, open a terminal window and navigate to the home directory into which you extracted Regina.

Look in the directory into which the files were extracted and find and read the Install Notes. They are
usually in a file named INSTALL* or README*. These notes give operating system specific instructions
you must follow to successfully install Regina.

The Install Notes will tell you that you need to enter these two commands as the root user id to the
operating system:

./configure

make install

These commands configure and install Regina. Since they compile source code, they require a C

compiler to run. Almost all Linux, Unix, and BSD machines will have a C compiler present. If your

system does not have one installed, download a free compiler from any of several sites including

www.gnu.org. For macOS, go to the Apple Store and download Xcode.

 Introduction to Scripting and Rexx

19

babs@dell1:~$ regina rexxtry
Try out Rexx statements interactively.

To end, enter EXIT

Rexxtry:
say 'Are single quotes' "the same as double quotes?"
Are single quotes the same as double quotes?
Rexxtry:
exit

The Install Notes will tell you if you need to set any environmental variables. Typically you'll need to set your

PATH to include the location of the Regina binary. And, you'll need to point the LD_LIBRARY_PATH

environmental variable to where Regina's shared library file resides (usually in /usr/local/lib).

Again, refer to the install instructions! They'll give you the exact commands to run, which do vary by the

operating system.

Finally, test your installation by running one of the Regina-provided demo scripts. Let’s
benchmark your system by running the benchmark program used in the table on page 5 of this
chapter. You can compare your system’s performance to the examples listed in that table.

The program to run is called rexxcps.rexx. You may have to look around in the Regina
install directories to locate it. Change to that directory, then enter this to run the program:

regina rexxcps or regina ./rexxcps.rexx

If you have any problems with installing, check that your PATH variable properly includes the path of the

Regina executable, and that the LD_LIBRARY_PATH or its equivalent properly points to Regina's shared

library.

Also, remember that to run a program you may need to set its permission bits as executable:

chmod +x your_program_name.rexx

Testing Rexx Statements: Rexxtry

As well as the rexxcps program that benchmarks your computer's performance, another common

program distributed with most Rexx interpreters is called rexxtry (if you can't find it, it's included with

the sample programs for this book that you can download for free from www.RexxInfo.org).

Start this program from the command line, and you can enter various Rexx statements to it. It responds by

executing the statement and returning its results to you.

Rexxtry can be useful to learn how Rexx works. Here's an example interaction where we test to see if Rexx

treats single and double quotation marks as the same by entering a say instruction:

Chapter 1

20

Summary
This chapter lists the advantages of scripting in Rexx and suggests where Rexx is most useful. Given its
power, flexibility, portability, and ease of use, Rexx is suitable for addressing a wide range of
programming problems. The only situations where Rexx does not apply are those oriented toward
“systems programming” and programs that demand totally optimized machine utilization.

Rexx distinguishes itself among scripting languages by combining ease of use with power. Rexx uses
specific interpreter design techniques to achieve this combination. Rexx has simple syntax, minimal
"special variables," no "default variables", and a case-insensitive free-format combined with a small, easily
learned instruction set. Its many built-in functions, extensibility, and the ability to issue commands to the
operating system and other external interfaces give Rexx power while retaining ease of use.

Ease of use is important even to highly experienced computer professionals because it reduces error
rates and determines the life span of their code. Experienced developers leverage a quickly coded
language like Rexx to achieve outstanding productivity.

The final part of this chapter showed how to download and install Regina Rexx under Windows, Linux,
Unix, BSD, and macOS. This popular Rexx interpreter is a free, open-source product you can use to
learn Rexx in the tutorial of the following chapters. Any other standard Rexx interpreter could be used
as well. The next several chapters get you quickly up and running Rexx scripts through an example-
based tutorial.

Test Your Understanding
1. In what way is Rexx a higher-level language than compiled languages like C or C++ ? What’s a

glue language? Why is there an industry-wide trend towards scripting languages?

2. Are developers required to code Rexx instructions starting in any particular column? In upper-
or lowercase?

3. Even if you’re an expert programmer, why is ease of use still important?

4. What are names of the two object-oriented Rexx interpreters? Will standard or classic

Rexx scripts run under these OO interpreters without alteration?

5. Does Rexx run on Android? How about departmental servers? PCs? Mainframes?

6. What are the two key Rexx standards? Are these two standards almost the same or
significantly different?

7. Traditionally there is a trade-off between ease of use and power. What specific
techniques does Rexx employ to gain both attributes and circumvent the trade-
off?

Language Basics

Overview
This chapter describes the basic elements of Rexx. It discusses the simple components that make
up the language. These include script structure, elements of the language, operators, variables,
and the like. As a starting point, we explore a simple sample script. We’ll walk through this script
and explain what each statement means. Then we’ll describe the language components individu-
ally, each in its own section. We’ll discuss Rexx variables, character strings, numbers, operators,
and comparisons.

By the end of this chapter, you’ll know about the basic components of the Rexx language. You’ll be
fully capable of writing simple scripts and will be ready to learn about the language features
explored more fully in subsequent chapters. The chapters that follow present other aspects of the
language, based on sample programs that show its additional features. For example, topics cov-
ered in subsequent chapters include directing the logical flow of a script, arrays and tables, input
and output, string manipulation, subroutines and functions, and the like. But now, let’s dive into
our first sample script.

A First Program
Had enough of your job? Maybe it’s time to join the lucky developers who create computer games
for a living! The complete Rexx program that follows is called the Number Game. It generates a
random number between 1 and 10 and asks the user to guess it (well, okay, the playability is a bit
weak. . . .) The program reads the number the user guesses and states whether the guess is correct.

/* The NUMBER GAME - User tries to guess a number between 1 and 10 */

/* Generate a random number between 1 and 10 */

the_number = random(1,10)

say “I’m thinking of number between 1 and 10. What is it?”

pull the_guess

if the_number = the_guess then

say ‘You guessed it!’

else

say ‘Sorry, my number was: ‘ the_number

say ‘Bye!’

Here are two sample runs of the program:

C:\Regina\pgms>number_game.rexx

I’m thinking of number between 1 and 10. What is it?

4

Sorry, my number was: 6

Bye!

C:\Regina\pgms>number_game.rexx

I’m thinking of number between 1 and 10. What is it?

8

You guessed it!

Bye!

This program illustrates several Rexx features. It shows that you document scripts by writing whatever
description you like between the symbols /* and */. Rexx ignores whatever appears between these
comment delimiters. Comments can be isolated on their own lines, as in the sample program, or they can
appear as trailing comments after the statement on a line:

the_number = random(1,10) /* Generate a random number between 1 and 10 */

Comments can even stretch across multiple lines in box style, as long as they start with /* and end
with */ :

/**

* The NUMBER GAME - User tries to guess a number between 1 and 10 *

* Generate a random number between 1 and 10 *

**/

Rexx is case-insensitive. Code can be entered in lowercase, uppercase, or mixed case; Rexx doesn’t care.
The if statement could have been written like this if we felt it were clearer:

IF the_number = the_guess THEN

SAY ‘You guessed it!’

ELSE

SAY ‘Sorry, my number was: ‘ the_number

The variable named the_number could have been coded as THE_NUMBER or The_Number. Since Rexx
ignores case it considers all these as references to the same variable. The one place where case does mat-
ter is within literals or hardcoded character strings:

say ‘Bye!’ outputs: Bye!

22

Chapter 2

while

say ‘BYE!’ displays: BYE!

Character strings are any set of characters occurring between a matched set of either single quotation
marks (‘) or double quotation marks (“).

What if you want to encode a quote within a literal? In other words, what do you do when you need to
encode a single or double quote as part of the character string itself? To put a single quotation mark
within the literal, enclose the literal with double quotation marks:

say “I’m thinking of number between 1 and 10. What is it?”

To encode double quotation marks within the string, enclose the literal with single quotation marks:

say ‘I am “thinking” of number between 1 and 10. What is it?’

Rexx is a free-format language. The spacing is up to you. Insert (or delete) blank lines for readability, and
leave as much or as little space between instructions and their operands as you like. Rexx leaves the cod-
ing style up to you as much as a programming language possibly can.

For example, here’s yet another way to encode the if statement:

IF the_number = the_guess THEN SAY ‘You guessed it!’

ELSE SAY ‘Sorry, my number was: ‘ the_number

About the only situation in which spacing is not the programmer’s option is when encoding a Rexx func-
tion. A function is a built-in routine Rexx provides as part of the language; you also may write your own
functions. This program invokes the built-in function random to generate a random number between 1
and 10 (inclusive). The parenthesis containing the function argument(s) must immediately follow the
function name without any intervening space. If the function has no arguments, code it like this:

the_number = random()

Rexx requires that the parentheses occur immediately after the function name to recognize the function
properly.

The sample script shows that one does not need to declare or predefine variables in Rexx. This differs
from languages like C++, Java, COBOL, or Pascal. Rexx variables are established at the time of their first
use. The variable the_number is defined during the assignment statement in the example. Space for the
variable the_guess is allocated when the program executes the pull instruction to read the user’s
input:

pull the_guess

In this example, the pull instruction reads the characters that the user types on the keyboard, until he
or she presses the <ENTER> key, into one or more variables and automatically translates them to upper-
case. Here the item the user enters is assigned to the newly created variable the_guess.

23

Language Basics

All variables in Rexx are variable-length character strings. Rexx automatically handles string length
adjustments. It also manages numeric or data type conversions. For example, even though the variables
the_number and the_guess are character strings, if we assume that both contain strings that represent
numbers, one could perform arithmetic or other numeric operations on them:

their_sum = the_number + the_guess

Rexx automatically handles all the issues surrounding variable declarations, data types, data conver-
sions, and variable length character strings that programmers must manually manage in traditional
compiled languages. These features are among those that make it such a productive, high-level
language.

Language Elements
Rexx consists of only two dozen instructions, augmented by the power of some 70 built-in functions.
Figure 2-1 below pictorially represents the key components of Rexx. It shows that the instructions and
functions together compose the core of the language, which is then surrounded and augmented by other
features. A lot of what the first section of this book is about is introducing the various Rexx instructions
and functions.

Figure 2-1

Of course, this book also provides a language reference section in the appendices, covering these and
other aspects of the language. For example, Appendix B is a reference to all standard Rexx instructions,
while Appendix C provides the reference to standard functions.

2 dozen Instructions

Elements of Rexx

Other language components & features

70 Built-in

Functions

Operators

Arithmetic

Comparison

Logical

String

24

Chapter 2

The first sample program illustrated the use of the instructions say, pull, and if. Rexx instructions are
typically followed by one or more operands, or elements upon which they operate. For example, say is
followed by one or more elements it writes to the display screen. The pull instruction is followed by a
list of the data elements it reads.

The sample script illustrated one function, random. Functions are always immediately followed by
parentheses, usually containing function arguments, or inputs to the function. If there are no arguments,
the function must be immediately followed by empty parentheses () . Rexx functions always return a
single result, which is then substituted into the expression directly in place of the function call. For
example, the random number returned by the random function is actually substituted into the statement
that follows, on the right-hand side of the equals sign, then assigned to the variable the_number:

the_number = random(1,10)

Variables are named storage locations that can contain values. They do not need to be declared or defined
in advance, but are rather created when they are first referenced. You can declare or define all variables
used in a program at the beginning of the script, but Rexx does not require this. Some programmers like
to declare all variables at the top of their programs, for clarity, but Rexx leaves the decision whether or
not to do this up to you.

All variables in Rexx are internally stored as variable-length strings. The interpreter manages their
lengths and data types. Rexx variables are “typeless” in that their contents define their usage. If strings
contain digits, you can apply numeric operations to them. If they do not contain strings representing
numeric values, numeric operations don’t make sense and will fail if attempted. Rexx is simpler than
other programming languages in that developers do not have to concern themselves with data types.

Variable names are sometimes referred to as symbols. They may be composed of letters, digits, and charac-
ters such as . ! ? _ . A variable name you create must not begin with a digit or period. A simple variable
name does not include a period. A variable name that includes a period is called a compound variable and
represents an array or table. Arrays will be covered in Chapter 4. They consist of groups of similar data
elements, typically processed as a group.

If all Rexx variables are typeless, how does one create a numeric value? Just place a string representing a
valid number into a Rexx variable. Here are assignment statements that achieve this:

whole_number_example = 15

decimal_example = 14.2

negative_number = -21.2

exponential_notation_example = 14E+12

A number in Rexx is simply a string of one or more digits with one optional decimal point anywhere in
the string. Numbers may optionally be preceded by their sign, indicating a postive or a negative num-
ber. Numbers may be represented very flexibly by almost any common notation. Exponential numbers
may be represented in either engineering or scientific notation (the default is scientific). The following
table shows examples of numbers in Rexx.

25

Language Basics

Number Type Also Known As Examples

Whole Integer ‘3’ ‘+6’ ‘9835297590239032’

Decimal Fixed point ‘0.3’ ‘17.36425’

Exponential Real --or-- ‘1.235E+11’ (scientific, one digit left of decimal point)

Floating point ‘171.123E+11’ (engineering, 1 to 3 digits left of decimal)

Variables are assigned values through either assignment statements or input instructions. The assign-
ment statement uses the equals sign (=) to assign a value to a variable, as shown earlier. The input
instructions are the pull or parse instructions, which read input values, and the arg and parse arg

instructions, which read command line parameters or input arguments to a script.

If a variable has not yet been assigned a value, it is referred to as uninitialized. The value of an uninitial-
ized variable is the name of the variable itself in uppercase letters. This if statement uses this fact to
determine if the variable no_value_yet is uninitialized:

if no_value_yet = ‘NO_VALUE_YET’ then

say ‘The variable is not yet initialized.’

Character strings or literals are any set of characters enclosed in single or double quotation marks (‘ or “).

If you need to include either the single or double quote within the literal, simply enclose that literal with
the other string delimiter. Or you can encode two single or double quotation marks back to back, and
Rexx understands that this means that one quote is to be contained within the literal (it knows the dou-
bled quote does not terminate the literal). Here are a few examples:

literal= ‘Literals contain whatever characters you like: !@#$%^&*()-=+~.<>?/_’

need_a_quote_mark_in_the_string = “Here’s my statement.”

same_as_the_previous_example = ‘Here’’s my statement.’

this_is_the_null_string = ‘’ /*two quotes back to back are a “null string” */

In addition to supporting any typical numeric or string representation, Rexx also supports hexadecimal or
base 16 numbers. Hex strings contain the upper- or lowercase letters A through F and the digits 0 through
9, and are followed by an upper- or lowercase X:

twenty_six_in_hexidecimal = ‘1a’x /* 1A is the number 26 in base sixteen */

hex_string = “3E 11 4A”X /* Assigns a hex string value to hex_string */

Rexx also supports binary, or base two strings. Binary strings consist only of 0s and 1s. They are denoted
by their following upper- or lowercase B:

example_binary_string = ‘10001011’b

another_binary_string = ‘1011’B

Rexx has a full complement of functions to convert between regular character strings and hex and binary
strings. Do not be concerned if you are not familiar with the uses of these kinds of strings in program-
ming languages. We mention them only for programmers who require them. Future chapters will
explain their use more fully and provide illustrative examples.

26

Chapter 2

Operators
Every programming language has operators, symbols that indicate arithmetic operations or dictate that
comparisons must be performed. Operators are used in calculations and in assigning values to variables,
for example. Rexx supports a full set of operators for the following.

❑ Arithmetic

❑ Comparison

❑ Logical operators

❑ Character string concatenation

The arithmetic operators are listed in the following table:

Arithmetic Operator Use

+ Addition

- Subtraction

* Multiplication

/ Division

% Integer division — returns the integer part of the result from division

// Remainder division — returns the remainder from division

** Raise to a whole number power

+ (as a prefix) Indicates a positive number

- (as a prefix) Indicates a negative number

All arithmetic operators work as one would assume from basic high-school algebra, or from program-
ming in most other common programming languages. Here are a few examples using the less obvious
operators:

say (5 % 2) /* Returns the integer part of division result. Displays: 2 */

say (5 // 2) /* Returns the remainder from division. Displays: 1 */

say (5 ** 2) /* Raises the number to the whole power. Displays: 25 */

Remember that because all Rexx variables are strings, arithmetic operators should only be applied to
variables that evaluate to valid numbers. Apply them only to strings containing digits, with their
optional decimal points and leading signs, or to numbers in exponential forms.

Numeric operations are a major topic in Rexx (as in any programming language). The underlying princi-
ple is this — the Rexx standard ensures that the same calculation will yield the same results even when run under
different Rexx implementations or on different computers. Rexx provides an exceptional level of machine- and
implementation-independence compared with many other programming languages.

27

Language Basics

Chapter 2

If you are familiar with other programming languages, you might wonder how Rexx achieves this
benefit. Internally, Rexx employs decimal arithmetic. It does not suffer from the approximations caused
by languages that rely on floating point calculations or binary arithmetic.

The only arithmetic errors Rexx gives are overflow (or underflow). These result from insufficient storage to
hold exceptionally large results.

To control the number of significant digits in arithmetic results, use the numeric instruction.
Sometimes the number of significant digits is referred to as the precision of the result. Numeric precision
defaults to nine digits. This sample statement illustrates the default precision because it displays nine
digits to the right of the decimal place in its result:

say 2 / 3 /* displays 0.666666667 by default */

This example shows how to change the precision in a calculation. Set the numeric precision to 12 digits
by the numeric instruction, and you get this result:

numeric digits 12 /* set numeric precision to 12 digits */

say 2 / 3 /* displays: 0.666666666667 */

Rexx preserves trailing zeroes coming out of arithmetic operations:

say 8.80 – 8 /* displays: 0.80 */

If a result is zero, Rexx always displays a single-digit 0:

say 8.80 – 8.80 /* displays: 0 */

Chapter 7 explores computation further. It tells you everything you need to know about how to express
numbers in Rexx, conversion between numeric and other formats, and how to obtain and display
numeric results. We’ll defer further discussion on numbers and calculations to Chapter 7.

Comparison operators provide for numeric and string comparisons. These are the operators you use to
determine the equality or inequality of data elements. Use them to determine if one data item is greater
than another or if two variables contain equal values.

Since every Rexx variable contains a character string, you might wonder how Rexx decides to perform a
character or numeric comparison. The key rule is: if both terms involved in a comparison are numeric, then
the comparison is numeric. For a numeric comparison, any leading zeroes are ignored and the numeric
values are compared. This is just as one would expect.

If either term in a comparison is other than numeric, then a string comparison occurs. The rule for string
comparison is that leading and trailing blanks are ignored, and if one string is shorter than the other, it
is padded with trailing blanks. Then a character-by-character comparison occurs. String comparison is
case-sensitive. The character string ABC is not equal to the string Abc. Again, this is what one would
normally assume.

Rexx features a typical set of comparison operators, as shown in the following table:

28

Comparison Operator Meaning

= Equal

\= ¬= Not equal

> Greater than

< Less than

>= \< ¬< Greater than or equal to, not less than

<= \> ¬> Less than or equal to, not greater than

>< <> Greater than or less than (same as not equal)

The “not” symbol for operators is typically written as a backslash, as in “not equal:” \= But some-
times you’ll see it written as ¬ as in “not equal:” ¬= Both codings are equivalent in Rexx. The first repre-
sentation is very common, while the second is almost exclusively associated with mainframe scripting.
Since most keyboards outside of mainframe environments do not include the symbol ¬ we recommend always
using the backslash. This is universal and your code will run on any platform. The backslash is the ANSI-
standard Rexx symbol. You can also code “not equal to” as: <> or >< .

In Rexx comparisons, if a comparison evaluates to TRUE, it returns 1. A FALSE comparison evaluates to 0.
Here are some sample numeric and character string comparisons and their results:

‘37’ = ‘37’ /* TRUE – a numeric comparison */
‘0037’= ‘37’ /* TRUE – numeric comparisons disregard leading zeroes */
‘37’ = ‘37 ‘ /* TRUE - blanks disregarded */
‘ABC’ = ‘Abc’ /* FALSE - string comparisons are case-sensitive */
‘ABC’ = ‘ ABC ‘ /* TRUE- preceding & trailing blanks are irrelevant */
‘’ = ‘ ‘ /* TRUE– null string is blank-padded for comparison */

Rexx also provides for strict comparisons of character strings. In strict comparisons, two strings must be iden-
tical to be considered equal — leading and trailing blanks count and no padding occurs to the shorter
string. Strict comparisons only make sense in string comparisons, not numeric comparisons. Strict com-
parison operators are easily identified because they contain doubled operators, as shown in the follow-
ing chart:

Strict Comparison Operator Meaning

== Strictly equal

\== ¬== Strictly not equal

>> Strictly greater than

<< Strictly less than

>>= \<< ¬<< Strictly greater than or equal to, strictly not less than

<<= \>> ¬>> Strictly less than or equal to, strictly not greater than

29

Language Basics

Here are sample strict string comparisons:

‘37’ == ‘37 ‘ /* FALSE – strict comparisons include blanks */
‘ABC’ >> ‘AB’ /* TRUE – also TRUE as a nonstrict comparison */
‘ABC’ == ‘ ABC ‘ /* FALSE – blanks count in strict comparison */
‘’ == ‘ ‘ /* FALSE – blanks count in strict comparison */

Logical operators are sometimes called Boolean operators because they apply Boolean logic to the operands.
Rexx’s logical operators are the same as the logical operators of many other programming languages.
This table lists the logical operators:

Logical Operator Meaning Use

& Logical AND TRUE if both terms are true

| Logical OR TRUE if either term is true

&& Logical EXCLUSIVE OR TRUE if either (but not both)
terms are true

¬ or \ (as a prefix) Logical NOT Changes TRUE to FALSE and
vice versa

Boolean logic is useful in if statements with multiple comparisons. These are also referred to as com-
pound comparisons. Here are some examples:

if (‘A’ = var1) & (‘B’ = var2) then
say ‘Displays only if BOTH comparisons are TRUE’

if (‘A’ = var1) | (‘B’ = var2) then
say ‘Displays if EITHER comparison is TRUE’

if (‘A’ = var1) && (‘B’ = var2) then
say ‘Displays if EXACTLY ONE comparison is TRUE’

if \(‘A’ = var1) then say ‘Displays if A is NOT equal to var1’

Concatenation is the process of pasting two or more character strings together. Strings are appended one
to the end of the other. Explicitly concatenate strings by coding the concatenation operator || . Rexx also
automatically concatenates strings when they appear together in the same statement. Look at these
instructions executed in sequence:

my_var = ‘Yogi Bear’
say ‘Hi there,’ || ‘ ‘ || my_var /* displays: ‘Hi there, Yogi Bear’ */
say ‘Hi there,’my_var /* displays: ‘Hi there,Yogi Bear’

no space after the comma */
say ‘Hi there,’ my_var /* displays: ‘Hi there, Yogi Bear’

one space after the comma */

The second say instruction shows concatenation through abuttal. A literal string and a variable appear
immediately adjacent to one another, so Rexx concatenates them without any intervening blank.

30

Chapter 2

Contrast this to the last say instruction, where Rexx concatenates the literal and variable contents, but
with one blank between them. If there are one or more spaces between the two elements listed as
operands to the say instruction, Rexx places exactly one blank between them after concatenation.

Given these three methods of concatenating strings, individual programmers have their own prefer-
ences. Using the concatenation operator makes the process more explicit, but it also results in longer
statements to build the result string.

Rexx has four kinds of operators: arithmetic, comparison, logical, and concatenation. And there are sev-
eral operators in each group. If you build a statement with multiple operators, how does Rexx decide
which operations to execute first? The order can be important. For example:

4 times 3, then subtract 2 from the result is 10

Perform those same operations with the same numbers in a different order, and you get a different result:

3 subtract 2, then multiple that times 4 yields the result of 4

Both these computations involve the same two operations with the same three numbers but the opera-
tions occur in different orders. They yield different results.

Clearly, programmers need to know in what order a series of operations will be executed. This issue is
often referred to as the operator order of precedence. The order of precedence is a rule that defines which
operations are executed in what order.

Some programming languages have intricate or odd orders of precedence. Rexx makes it easy. Its order
of precedence is the same as in conventional algebra and the majority of programming languages. (The
only minor exception is that the prefix minus operator always has higher priority than the exponential
operator).

From highest precedence on down, this lists Rexx’s order of precedence:

❑ Prefix operators + - \

❑ Power operator **

❑ Addition and subtraction + -

❑ Concatenation by intervening blanks || by abuttal

❑ Comparison operators = == > < >= <= ...and the others

❑ Logical AND &

❑ Logical OR |

❑ EXCLUSIVE OR &&

If the order of precedence is important to some logic in your program, an easy way to ensure that opera-
tions occur in the manner in which you expect is to simply enclose the operations to perform first in
parentheses. When Rexx encounters parentheses, it evaluates the entire expression when that term is
required. So, you can use parentheses to guarantee any order of evaluation you require. The more
deeply nested a set of parentheses is, the higher its order of precedence. The basic rule is this: when Rexx
encounters expressions nested within parentheses, it works from the innermost to the outermost.

31

Language Basics

To return to the earlier example, one can easily ensure the proper order of operations by enclosing the
highest order operations in parentheses:

say (4 * 3) - 2 /* displays: 10 */

To alter the order in which operations occur, just reposition the parentheses:

say 4 * (3 – 2) /* displays: 4 */

Summary
This chapter briefly summarizes the basic elements of Rexx. We’ve kept the discussion high level and
have avoided strict “textbook definitions.” We discussed variable names and how to form them, and the
difference between simple variable names and the compound variable names that are used to represent
tables or arrays. We discussed the difference between strings and numbers and how to assign both to
variables.

We also listed and discussed the operators used to represent arithmetic, comparison, logical, and string
operations. We gave a few simple examples of how the operators are used; you’ll see many more, real-
world examples in the sample scripts in the upcoming chapters.

The upcoming chapters round out your knowledge of the language and focus in more detail on its capa-
bilities. They also provide many more programming examples. Their sample scripts use the language
elements this chapter introduces in many different contexts, so you’ll get a much better feel for how they
are used in actual programming.

Test Your Understanding
1. How are comments encoded in Rexx? Can they span more than one line?

2. How does Rexx recognize a function call in your code?

3. Must variables be declared in Rexx as in languages like C++, Pascal, or Java? How are variables
established, and how can they be tested to see if they have been defined?

4. What are the two instructions for basic screen input and output?

5. What is the difference between a comparison and strict comparison? When do you use one versus
the other? Does one apply strict comparisons to numeric values?

6. How do you define a numeric variable in Rexx?

32

Chapter 2

Control Structures

Overview
Program logic is directed by what are called control structures or constructs — statements like
if- then-else, do-while, and the like. Rexx offers a complete set of control structures in less than
a dozen instructions.

Rexx fully supports structured programming, a rigorous methodology for program development
that simplifies code and reduces programmer error. Invented and defined by such experts as
Edsger Dijkstra and Edward Yourdon, structured programming restricts control structures to a
handful that permit single points of entry and exit to code blocks. The “golden rule” of structured
programming mandates that there should be only a single entry point and a single exit point from
any code block, such as a do loop. Goto’s and unstructured entries and exits are prohibited.

Structured programming encourages modularity and reduces complex spaghetti code to short,
readable, sections of self-contained code. Small, well-documented routines mean greater clarity
and fewer programmer errors. While developer convenience sometimes leads to unstructured
code (“Well... it made sense when I wrote it!”), structured, modular code is more readable and
maintainable.

We recommend structured programming; nearly all of the examples in this book are
structured. But we note that, as a powerful programming language, Rexx includes instructions
that permit unstructured coding if desired.

This chapter discusses how to write structured programs with Rexx. We start by listing the Rexx
instructions used to implement structured constructs. Then, we describe each in turn, showing
how it is used in the language through numerous code snippets. At appropriate intervals, we pre-
sent complete sample scripts that illustrate the use of the instructions in structured coding.

The latter part of the chapter covers the Rexx instructions for unstructured programming. While
we don’t recommend their general use, there are special situations in which these instructions are
highly convenient. Any full-power scripting language requires a full set of instructions for control-
ling logical flow, including those that are unstructured.

Structured Programming in Rexx
As we’ve mentioned, structured programming consists of a set of constructs that enforce coding disci-
pline and organization. These are implemented in Rexx through its basic instructions for the control of
program logic. The basic constructs of structured programming and the Rexx instructions used to imple-
ment them are listed in this table:

Structured Construct Rexx Instruction

PROCESS Any set of instructions, executed one after another. The exit or
return instructions end the code composing a program or routine.

IF-THEN. IF-THEN-ELSE if

DO. DO-WHILE do

CASE select

CALL call

Figure 3-1 illustrates the structured constructs.

Figure 3-1

Process

Do-while

Case

Call

subroutine

If If-then-else

The Structured Control Constructs

34

Chapter 3

IF Statements
if statements express conditional logic. Depending on the evaluation of some condition, a different
branch of program logic executes. if statements are common to nearly all programming languages, and
they represent the basic structured instruction for conditional logic. The two basic formats of the Rexx if
instruction are:

IF expression THEN instruction

and

IF expression THEN instruction ELSE instruction

Rexx evaluates the expression to 1 if it is TRUE, and 0 if it is FALSE. Here are sample if statements:

/* A simple IF statement with no ELSE clause */

if input = ‘YES’ then
say ‘You are very agreeable’

/* In this example the IF statement tests a two-part or “compound” condition. The
SAY instruction executes only if BOTH conditions are TRUE, because of the
AND (&) operator */

if input = ‘YES’ & second_input = ‘YES’ then
say ‘You are doubly agreeable today’

/* This compound IF is true if EITHER of the two expressions are TRUE */

if input = ‘YES’ | second_input = ‘YES’ then
say ‘You are singly agreeable today’

/* Here’s a simple IF statement with an ELSE clause.
The DATATYPE function verifies whether the variable INPUT contains a NUMBER */

if datatype(input,N) then
say ‘Your input was a number’

else
say ‘Your input was not numeric’

/* This coding is NOT recommended in Rexx, though it is popular in languages
like C or C++ or many Unix shell languages...
Variable VAR must be exactly 1 or 0 -- or else a syntax error will occur! */

if (var) then
say ‘VAR evaluated to 1’

else
say ‘VAR evaluated to 0’

To execute more than a single instruction after either the then or else keywords, you must insert the
multiple instructions between the keywords do and end. Here is an example:

35

Control Structures

if datatype(input,N) then do
say ‘The input was a number’
status_record = ‘VALID’
end

else do
say ‘The input was NOT a number’
status_record = ‘INVALID’

end

The do-end pair groups multiple instructions. This is required when you encode more than one instruc-
tion as a logic branch in an if instruction. Notice that you must use the do-end pair for either branch of
the if instruction when it executes more than a single statement. In other words, use the do-end pair to
group more than a single instruction on either the then or the else branches of the if instruction.

You can nest if statements, one inside of another. If you nest if statements very deeply, it becomes con-
fusing as to which else clause matches which if instruction. The important rule to remember is that an else
clause is always matched to the nearest unmatched if. Rexx ignores indentation, so how you indent nested if
statements has no effect on how Rexx interprets them.

The following code includes comments that show where the programmer sees the end of each if
instruction. He or she includes these for documentation purposes only, since Rexx ignores comments
(regardless of what the comments may say).

if age => 70 then
say ‘Person MUST start taking mandatory IRA distributions’

else
if age >= 65 then

say ‘Person can receive maximum Social Security benefits’
else

if age >= 62 then
say ‘Person may elect reduced Social Security benefits’

else
say ‘Person is a worker bee, not a beneficiary’

/* end-if */
/* end-if */

/* end-if */

Here’s another style in which to code this example. This series of nested if statements is sometimes
referred to as an if-else-if ladder. The first logic branch that evaluates to TRUE executes:

if age => 70 then
say ‘Person MUST start taking mandatory IRA distributions’

else if age >= 65 then
say ‘Person can receive maximum Social Security benefits’

else if age >= 62 then
say ‘Person may elect reduced Social Security benefits’

Some languages provide special keywords for this situation, but Rexx does not. (For example, some
Unix shell languages provide the elif keyword to represent Rexx’s else if pair). Remember to code a
do – end pair whenever more than one instruction executes within a branch of the if instruction.

36

Chapter 3

The if-else-if ladder embodies another structured construct often referred to the CASE construct. In a
CASE construct, a set of conditions are tested, then one logic branch is selected from among several.

Rexx provides the select instruction to create CASE logic, as will be explained later. In Rexx you can
either choose an if-else-if ladder or the select instruction to encode CASE logic.

Sometimes, you’ll encounter a coding situation where you want to code a logic branch that performs no
action. In this case, code the Rexx nop instruction. “nop” is a traditional computer science abbreviation
or term that means “no operation.” The nop instruction is a placeholder that results in no action. Here
is an example. The nop instruction in this code ensures that no action is taken when the if statement
condition evaluates to TRUE:

if case_is_undetermined = ‘Y’ then
nop /* No action is taken here. NOP is a placeholder only. */

else do
say ‘Case action completed’
status_msg = ‘Case action completed’

end

DO Statements
The do instruction groups statements together and optionally executes them repetitively. It comes in sev-
eral forms, all of which we’ll explore in this chapter. do instructions permit repetitive execution of one or
more statements. They are the basic way you code program “loops” in Rexx.

You are already familiar with the simple do-end pair used to group multiple instructions. Here is the
generic representation of how this is coded:

DO
instruction_list

END

Use the do-end group when you must execute multiple instructions in a branch of the if instruction, for
example. Here’s another form of the do instruction that repetitively executes a group of instructions
while the condition in the expression is TRUE:

DO WHILE expression
instruction_list

END

This coding example shows how to use this generic format. It employs a do while to call a subroutine
exactly 10 times:

j = 1
do while j <= 10

call sub_routine
j = j + 1

end

37

Control Structures

The do instruction is flexible and offers other formats for devising loops. The preceding loop could also
be coded with a simpler form of the do instruction:

do 10
call sub_routine

end

Or, the example could be coded using a controlled repetitive loop:

do j = 1 to 10 by 1
call sub_routine

end

The phrase by 1 is unnecessary because Rexx automatically increases the do loop control variable by 1 if
this phrase is not coded. But the keyword by could be useful in situations where you want to increase
the loop counter by some other value:

do j = 1 to 20 by 2
call sub_routine

end

In addition to the to and by keywords, for may be used establish another limit on the loop’s execution
if some other condition does not terminate it first. for is like to, in that Rexx checks it prior to each iter-
ation through the loop. to, by, and for may be coded in any order. In this example, the for keyword
limits the do loop to three executions:

do j = 1 to 100 by 1 for 3
say ‘Loop executed:’ j ‘times.’ /* Ends with: ‘Loop executed: 3 times.’ */

end

You may alter the loop control variable yourself, directly, while inside of the do loop, but this is not a rec-
ommended programming practice. It is confusing, and there is always an alternative way to handle such
a situation from the logical standpoint. We recommend always using the loop control variable only for
controlling an individual loop, and only altering that variable’s value through the do instruction condi-
tion test.

Rexx also contains unstructured loop control instructions such as leave, iterate, and signal, which
we cover later in the section of this chapter on unstructured control constructs. At that time we also
cover the do until and do forever forms of do loops, which also fall outside the rules of structured
programming.

A Sample Program
This program prompts the user to input a series of words, one at a time. The program identifies words
that are four characters long, and concatenates them into a list, which it then displays. The program
illustrates a basic do loop, using it to read input from the user. It also shows how to use the if instruc-
tion in determining the lengths of the words the user enters.

38

Chapter 3

If you were to enter this sentence to the program (one word at a time):

now is the time for all good men to come to the aid of their country

the program’s output would be:

Four letter words: time good come

Here’s the sample program:

/* FOUR LETTER WORDS: */
/* */
/* This program identifies all four letter words in the */
/* input and places them into an output list. */

four_letter_words = ‘’ /* initialize to no 4 letter words found yet */

say “Enter a word: “ /* prompt user to enter 1 word */
parse pull wordin . /* the period ensures only 1 word is read in */
do while wordin \= ‘’

if length(wordin) = 4 then
four_letter_words = four_letter_words wordin

say “Enter a word: “ /* read the next word in */
parse pull wordin .

end

say ‘Four letter words:’ four_letter_words /* display output */

The do while loop in this script provides the control structure for the program to prompt the user and
read one word after that prompt. The do while loop terminates when the user declines to enter a word —
after the user just presses the <ENTER> key in response to the program’s prompt to Enter a word:
When the user presses the <ENTER> key without entering a word, this statement recognizes that fact and
terminates the do while loop:

do while wordin \= ‘’

Recall that the pull instruction reads an input and automatically translates it to uppercase. This pro-
gram uses parse pull to read an input without the automatic translation to uppercase:

parse pull wordin .

The period ensures that only the first word is accepted should the user enter more than one. This use of
the period is a convention in Rexx, and it’s about the only example of syntax-based coding in the entire
language. You could achieve the same effect by coding:

parse pull wordin junk

The first word entered by the user is parsed into the variable wordin, while any remaining words
entered on the input line would be placed into the variable named junk.

39

Control Structures

The program uses the length function to determine whether the word the user entered contains four
letters. If so, the next statement concatenates the four letter word into a list it builds in the variable
named four_letter_words.

if length(wordin) = 4 then
four_letter_words = four_letter_words wordin

The assignment statement relies on the fact that Rexx automatically concatenates variables placed in the
same statement, with one space between each. An alternative would have been to use the explicit con-
catenation operator:

four_letter_words = four_letter_words || wordin

But in this case the output would have been:

Four letter words: timegoodcome

Explicit concatenation requires explicitly splicing in a blank to achieve properly spaced output:

four_letter_words = four_letter_words || ‘ ‘ || wordin

After the user is done entering words, the program displays the output string through the following
statement. Since this is the last statement coded in the program, the script terminates after issuing it:

say ‘Four letter words:’ four_letter_words /* display output */

SELECT Statements
The CASE construct tests a series of conditions and executes the set of instructions for the first condition
that is TRUE. Rexx implements the CASE construct through its select instruction. The select instruc-
tion tests expressions and executes the logic branch of the first one that evaluates to TRUE. Here is the
generic format of the select instruction:

SELECT when_list [OTHERWISE instruction_list] END

The otherwise branch of the select instruction executes if none of the prior when_list conditions are
found to be TRUE. Note that it is possible to code a select instruction without an otherwise keyword,
but if none of the when_list conditions execute, an error results. We strongly recommend coding an
otherwise section on every select statement.

The Rexx select instruction provides more control than the same CASE construct in some other pro-
gramming languages because you can encode any expression in the when clause. Some languages only
permit testing the value of a specified variable.

Here’s a simple coding example using select:

select
when gender = ‘M’ then

say ‘Gender is male’

40

Chapter 3

when gender = ‘F’ then do
say ‘Gender is female’
female_count = female_count + 1
end

otherwise
say ‘Error -- Gender is missing or invalid’
say ‘Please check input record’

end /* this END pairs with the SELECT instruction itself */

If the value in the variable gender equals the character M, the first logic branch executes. If the value is F,
the group of instructions associated with the second when clause runs. If neither case is true, then the
instructions following the otherwise keyword execute.

Notice that an instruction_list follows the otherwise keyword, so if you code more than one state-
ment here you do not need to insert them in a do-end pair. Contrast this to the when groups, which do
require a do-end pair if they contain more than a single instruction. Don’t forget to encode the final end
keyword to terminate the select statement.

CALL Statements
All programming languages provide a mechanism to invoke other scripts or routines. This allows one
script, referred to as the caller, to run another, the subroutine. Rexx’s call instruction invokes a subrou-
tine, where the subroutine may be one of three kinds:

❑ Internal — Consists of Rexx code residing in the same file as the caller.

❑ Built-in — One of the Rexx built-in functions.

❑ External — Code residing in a different file than the invoking script. An external subroutine may
be another Rexx script, or it may be written in any language supporting Rexx’s interface.

The subroutine may optionally return one value to the caller through the Rexx special variable named
result. (Rexx has only a handful of special variables and result is one of them). Of course, you can
have the subroutine send back one or more results by changing the values of variables it has access to.
We’ll explore all the ways in which caller and subroutines or functions can communicate in detail in
Chapter 8, which is on subroutines and modularity. For now, we’ll just focus our discussion on the call
instruction.

Subroutines and functions are very similar in Rexx. The one difference is that a function must return a
value to the caller by its return instruction, where a subroutine may elect do so.

The following sample program illustrates the call instruction by invoking an internal routine as a sub-
routine. The subroutine is considered internal because its code resides in the same file as that of the pro-
gram that calls it. The program subroutine squares a number and returns the result.

The main program reads one input number as a command-line argument or input parameter. To run the pro-
gram and get the square of four, for example, you enter this line to specify the command-line argument:

square.rexx 4

41

Control Structures

Or, you may start the program by entering a line like this:

regina square 4

Recall that the first example given earlier implicitly invokes the Rexx interpreter, while the second exam-
ple explicitly invokes it. The command-line argument follows the name of the Rexx script you want to
run. Here it’s a single value, 4, but other programs might have either many or no command-line
arguments.

The program responds to either of the above commands with:

You entered: 4 Squared it is: 16

Here’s the program code:

/* SQUARE: */
/* */
/* Squares a number by calling an internal subroutine */

arg number_in . /* retrieve the command-line argument */

call square_the_number number_in
say ‘You entered:’ number_in ‘ Squared it is:’ result

exit 0

/* SQUARE_THE_NUMBER: */
/* */
/* Squares the number and RETURNs it into RESULT */

square_the_number: procedure

arg the_number
return the_number * the_number

The main program or driver uses the arg instruction to read the command-line argument into variable
number_in. As with the pull and parse pull instructions, encode a period (.) at the end of this state-
ment to eliminate any extraneous input:

arg number_in . /* retrieve the command-line argument */

The call instruction names the internal routine to invoke and passes the variable number_in to that
routine as its input. The subroutine uses the arg instruction to read this parameter (exactly as the main
routine did). Here is the encoding of the call instruction. The first parameter names the subroutine or
function to run, while each subsequent parameter is an input argument sent to the subroutine. In this
case, the call instruction passes a single argument named number_in to the subroutine named
square_the_number:

call square_the_number number_in

The first line of the subroutine identifies it as the routine named square_the_number. Notice that a
colon follows its name on the first line of the subroutine — this identifies a label in Rexx. An internal

42

Chapter 3

subroutine starts with the routine’s name in the form of a label. The procedure instruction on the first
line of the subroutine ensures that only the arguments passed to the subroutine will be accessable from
within it. No other variables of the calling routine are viewable or changeable by this subroutine. Here is
the first executable line of the subroutine:

square_the_number: procedure

The subroutine reads the number passed into it from its caller by the arg instruction. Then, the subrou-
tine returns a single result through its return instruction. Here is how this line is encoded. Notice that
Rexx evaluates the expression (squaring the number) before executing the return instruction:

return the_number * the_number

The caller picks up this returned value through the special variable named result. The main routine dis-
plays the squared result to the user through this concatenated display statement:

say ‘You entered:’ number_in ‘ Squared it is:’ result

This displays an output similar to this to the user:

You entered: 2 Squared it is: 4

The driver ends with the instruction exit 0. This unconditionally ends the script with a return code, or
returned value, of 0. The last statement of the internal subroutine was a return instruction. return
passes control back to the calling routine, in this case passing back the squared number. If the subroutine
is a function, a return instruction is required to pass back a value.

There is much more to say about subroutines and modular program design. We leave that discussion to
Chapter 8. For now, this simple script illustrates the structured CALL construct and how it can be used
to invoke a subroutine or function.

Another Sample Program
Here’s a program that shows how to build menus and call subroutines based on user input. This pro-
gram is a fragment of a real production program, slimmed down and simplified for clarity. The script
illustrates several instructions, including do and select. It also provides another example of how to
invoke internal subroutines.

The basic idea of the program is that it displays a menu of transaction options to the user. The user picks
which transaction to execute. The program then executes that transaction and returns to the user with
the menu. Here is how it starts. The program clears the screen and displays a menu of options to the
user that looks like this:

Select the transaction type by abbreviation:

Insert = I
Update = U
Delete = D

Exit = X

Your choice => _

43

Control Structures

Based on the user’s input, the program then calls the appropriate internal subroutine to perform an
Insert, Update, or Delete transaction. (In the example, these routines are “dummied out” and all each
really does is display a message that the subroutine was entered). The menu reappears until the user
finally exits by entering the menu option ‘x’.

Here’s the complete program:

/* MENU: */
/* */
/* This program display a menu and performs updates based */
/* on the transaction the user selects. */

‘cls’ /* clear the screen (Windows only) */
tran_type = ‘’
do while tran_type \= ‘X’ /* do until user enters ‘X’ */

say
say ‘Select the transation type by abbreviation:’
say
say ‘ Insert = I ‘
say ‘ Update = U ‘
say ‘ Delete = D ‘
say ‘ Exit = X ‘
say
say ‘Your choice => ‘
pull tran_type .
select

when tran_type = ‘I’ then
call insert_routine

when tran_type = ‘U’ then
call update_routine

when tran_type = ‘D’ then
call delete_routine

when tran_type = ‘X’ then do
say
say ‘Bye!’
end

otherwise
say
say ‘You entered invalid transaction type:’ tran_type
say ‘Press <ENTER> to reenter the transaction type.’
pull .

end
end
exit 0

/* INSERT_ROUTINE goes here */
INSERT_ROUTINE: procedure

say ‘Insert Routine was executed’
return 0

/* UDPATE_ROUTINE goes here */
UPDATE_ROUTINE: procedure

44

Chapter 3

say ‘Update Routine was executed’
return 0

/* DELETE_ROUTINE goes here */
DELETE_ROUTINE: procedure

say ‘Delete Routine was executed’
return 0

The first executable line in the program is this:

‘cls’ /* clear the screen (Windows only) */

When the Rexx interpreter does not recognize a statement as part of the Rexx language, it assumes that it
is an operating system command and passes it to the operating system for execution. Since there is no
such command as cls in the Rexx language, the interpreter passes the string cls to the operating sys-
tem for execution as an operating system command.

cls is the Windows command to “clear the screen,” so what this statement does is send a command to
Windows to clear the display screen. Of course, this statement makes this program operating-system-
dependent. To run this program under Linux or Unix, this statement should contain the equivalent com-
mand to clear the screen under these operating systems, which is clear:

‘clear’ /* clear the screen (Linux/Unix only) */

Passing commands to the operating system (or other external environments) is an important Rexx fea-
ture. It provides a lot of power and, as you can see, is very easy to code. Chapter 14 covers this topic in
detail.

Next in the program, a series of say commands paints the menu on the user’s screen:

say
say ‘Select the transation type by abbreviation:’
say
say ‘ Insert = I ‘
say ‘ Update = U ‘
say ‘ Delete = D ‘
say ‘ Exit = X ‘
say
say ‘Your choice => ‘

A say instruction with no operand just displays a blank line and can be used for vertically spacing the
output on the user’s display screen.

The script displays the menu repeatedly until the user finally enters ‘x’ or ‘X’. The pull command’s
automatic translation of user input to uppercase is handy here and eliminates the need for the program-
mer to worry about the case in which the user enters a letter.

The select construct leads to a call of the proper internal routine to handle the transaction the user
selects:

45

Control Structures

select
when tran_type = ‘I’ then

call insert_routine
when tran_type = ‘U’ then

call update_routine
when tran_type = ‘D’ then

call delete_routine
when tran_type = ‘X’ then do

say
say ‘Bye!’
end

otherwise
say
say ‘You entered invalid transaction type:’ tran_type
say ‘Press <ENTER> to reenter the transaction type.’
pull .

end

The when clause where the user enters ‘x’ or ‘X’ encloses its multiple instructions within a do-end pair.
The otherwise clause handles the case where the user inputs an invalid character. The final end in the
code concludes the select instruction.

Remember that the logic of the select statement is that the first condition that evaluates to TRUE is the
branch that executes. In the preceding code, this means that the program will call the proper subroutine
based on the transaction code the user enters.

Following the select instruction, the code for the main routine or driver ends with an exit 0 statement:

exit 0

This delimits the code of the main routine from that of the routines that follow it and also sends a return
code of 0 to the environment when the script ends. An exit instruction is required to separate the code
of the main routine from the subroutines or functions that follow it.

The three update routines contain no real code. Each just displays a message that it ran. This allows the
user to verify that the script is working. These subroutines cannot access any variables within the main
routine, because they have the procedure instruction, and no variables are passed into them. Each ends
with a return 0 instruction:

return 0

While this sample script is simple, it shows how to code a menu for user selection. It also illustrates call-
ing subroutines to perform tasks. This is a nice modular structure that you can expand when coding
menus with pick lists. Of course, many programs require graphical user interfaces, or GUIs. There are a
variety of free and open-source GUI interfaces available for Rexx scripting. GUI programming is an
advanced topic we’ll get to in a bit. Chapter 16 shows how to program GUIs with Rexx scripts.

46

Chapter 3

Unstructured Control Instructions
Rexx is a great language for structured programming. It supports all the constructs required and makes
structured programming easy. But the language is powerful and flexible, and there are times when
unstructured flow of control is necessary (or at least highly convenient). Here are the unstructured
instructions that alter program flow in Rexx:

Instruction Use

do until A form of the do instruction that implements a bottom-drive loop. Unlike do-
while, do-until will always execute the code in the loop at least one time,
because the condition test occurs at the bottom of the loop.

do forever Creates an endless loop, a loop that executes forever. This requires an unstruc-
tured exit to terminate the loop. Code the unstructured exit by either the
leave, signal or exit instruction.

iterate Causes control to be passed from the current statement in the do loop to the
bottom of the loop.

leave Causes an immediate exit from a do loop to the statement following the loop.

signal Used to trap exceptions (specific program error conditions). Can also be used to
unconditionally transfer control to a specified label, similarly to the GOTO
instruction in other programming languages.

Figure 3-2 below illustrates the unstructured control constructs.

The do until and do forever are two more forms of the do instruction. do until implements a
bottom-driven loop. Such a loop always executes at least one time. In contrast, the do while checks the
condition prior to entering the loop, so the loop may or may not be executed at least once. do until is
considered unstructured and the do while is preferred. Any logic that can be encoded using do until
can be coded using do while— you just have to think for a moment to see how to change the logic into
a do while.

Let’s look at the difference between do while and do until. This code will not enter the do loop to
display the message. The do while tests the condition prior to executing the loop, so the loop never
executes. The result in this example is that the say instruction never executes and does not display the
message:

ex = ‘NO’
do while ex = ‘YES’

say ‘Loop 1 was entered’ /* This line is never displayed. */
ex = ‘YES’

end

47

Control Structures

Figure 3-2

If we replace the do while loop with a do until loop, the code will execute through the loop one time,
printing the message once. This is because the condition test is applied only at the bottom of the loop. A
do until loop will always execute one time, even if the condition test on the do until is false, because
the test is not evaluated until after the loop executes one time. The result in this example is that the say
instruction executes once and displays one output line:

ex = ‘NO’
do until ex = ‘YES’

say ‘Loop 2 was entered’ /* This line is displayed one time. */
ex = ‘YES’

end

do forever creates an endless loop. You must have some unstructured exit from within the loop or your
program will never stop! This example uses the leave instruction to exit the endless loop when j = 4.
The leave instruction transfers control to the statement immediately following the end that terminates
the do loop. In this example, it breaks the endless loop and transfers control to the say statement imme-
diately following the loop:

j = 1
do forever

/* do some work here */
j = j + 1
if j = 4 then leave /* exits the DO FOREVER loop */

Do-until

Do-Forever

Iterate

Leave
Signal

The Un-Structured Control Constructs

48

Chapter 3

end
say ‘The above LEAVE instruction transfers control to this statement’

Another way to terminate the endless loop is to encode the exit instruction. exit ends a program
unconditionally (even if a subroutine is executing or if execution is nested inside of a do loop). Control
returns to the environment (the operating system) with the optional string encoded on the exit state-
ment passed up.

What return code you can pass to the environment or operating system using the exit instruction
depends on what that operating system accepts. Some systems accept only return codes that are numeric
digits between 0 and 127. If your script returns any other string, it is translated into a 0. Other operating
systems will accept whatever value you encode on the exit instruction.

Here’s an example. The following code snippet is the same as the previous one, which illustrates the
leave instruction, but this time when the condition j = 4 is attained, the script unconditionally exits
and returns 0 to the environment. Since the script ends, the say instruction following the do forever
loop never executes and does not display its output:

j = 1
do forever

/* do some work here */
j = j + 1
if j = 4 then

exit 0 /* unconditionally exits and passes ‘0’ back to the environment */
end
say ‘this line will never be displayed’ /* code EXITs, never reaches this line
*/

Another instruction for the unstructured transfer of control is signal. The signal instruction acts much
like the GOTO statement of other programming languages. It transfers control directly out of any loop,
CASE structure, or if statement directly to a Rexx label. A label is simply a symbol immediately fol-
lowed by a colon. This sample code snippet is similar to that we’ve seen earlier, except that this time the
signal instruction transfers control to a program label. So, once j = 4 and the signal instruction exe-
cute, control is transferred to the program label and the say instruction displays its output line:

j = 1
do forever

/* do some work here */
j = j + 1
if j = 4 then

signal my_routine /* unconditionally go to the label MY_ROUTINE */
end

/* other code here gets skipped by the SIGNAL instruction */

my_routine:
say ‘SIGNAL instruction was executed, MY_ROUTINE entered...’

signal differs from the GOTO of some other languages in that it terminates all active control structures in
which it is encoded. You could not transfer control to another point in a loop using it, for example.

49

Control Structures

Chapter 3

Duplicate labels are allowed within Rexx scripts, but control will always be transferred to the one that
occurs first. We recommend that all labels in a program be unique within a program for the sake of
readability.

In an entirely different role, the signal instruction is also used to capture or “trap” errors and
special conditions. Chapter 10 discusses this in detail. This is a special mechanism within the Rexx
language designed to capture unusual error conditions or “exceptions.”

The last unstructured instruction to discuss is the iterate instruction. The iterate instruction causes
control to be passed from the current statement in the do loop to the bottom of the loop. In this example,
the iterate instruction ensures that the say instruction never executes. The if instruction’s
condition evaluates to TRUE every time that statement is encountered, so the iterate instruction
reruns the do loop and the say instruction never runs:

j = 1

do until j = 4

/* do some work here */

j = j + 1

if j > 1 then iterate

say 'This line is never displayed!' /* this line will never execute */

end

Summary
This chapter summarizes Rexx’s structured and unstructured control constructs. These include the if,
do, select, call, exit, and return instructions for structured programming, and the unstructured
iterate, leave, and signal instructions. The do until and do forever forms of the do
instruction are also unstructured.

For more background on why structured programming is beneficial -- especially for larger and more
complicated programs -- refer to the works of Edward Yourdon and Edsger Dijkstra.

Use the instructions this chapter covers to direct conditional logic as in most other programming
languages. This chapter presented many small code snippets to illustrate how to use the instructions that
control program logic. Subsequent chapters will provide many more examples of the use of these
instructions. These upcoming examples demonstrate the instructions in the more realistic context of
complete programs. They will make the use of the instructions for the control of logical flow much
clearer.

Test Your Understanding
1. Why is structured programming recommended? What Rexx instructions implement

structured programming? How do subroutines and functions support the benefits of
structured programming?

2. How does Rexx determine which if instruction each else keyword pairs with?

3. Name two ways that a script can test for the end of user input.

4. What are the differences between built-in, internal, and external subroutines? What is the
difference between a function and a subroutine?

50

Control Structures

5. What are the values of TRUE and FALSE in Rexx?

6. What is the danger in coding a do forever loop? How does one address this danger?

7. What are the two main functions of the signal instruction? How does the signal
instruction differ from the GOTO command of many other programming languages?

8. What is the difference between the do-while and do-until instructions? Why use one
versus the other? Are both allowed in structured programming?

51

Arrays

Overview
Every programming language provides for arrays. Sometimes they are referred to as tables. This
basic data structure allows you to build lists of “like elements,” which can be stored, searched,
sorted, and manipulated by other basic programming operations.

You’ll sometimes hear arrays referred to as compound variables or stem variables in Rexx. We’ll
explain why in just a moment.

Rexx’s implementation of arrays is powerful but easy to use. Arrays can be of any dimensionality.
They can be a one-dimensional list, where all elements in the array are of the same kind. They can
be of two dimensions, where there exist pairs of entries. In this case, elements are manipulated by
two subscripts (such as I and J). Or, arrays can be of as many dimensions as you like. While Rexx
implementations vary, the usual constraint on the size and dimensionality of array is memory. This
contrasts with other programming languages that have specific, language-related limitations on
array size.

Rexx arrays may be sparse. That is, not every array position must have a value or even be initial-
ized. There can be empty array positions, or slots, between those that do contain data elements. Or
arrays can be dense, in which consecutive array slots all contain data elements. Figure 4-1 below
pictorially shows the difference between sparse and dense arrays. Dense arrays are also sometimes
called nonsparse arrays.

Arrays may be initialized by a single assignment statement. But just like other variables, arrays are
defined by their first use. You do not have to predefine or preallocate them. Nor must you declare
a maximum size for an array. The only limitation on array size in most Rexx implementations is
imposed by the amount of machine memory.

Figure 4-1

You can refer to individual elements within a Rexx arrray by numeric subscripts, as you do in other pro-
gramming languages. Or, you can refer to array elements by variables that contain character strings.
Rexx then uses those character strings as indexes into the array. For this reason, Rexx arrays are some-
times termed content addressable. They can be used as a form of associative memory, in that they create an
association between two values. This permits innovative use of arrays in problem solving. We’ll explain
what these terms mean and why are they important in more detail later in the chapter. We’ll even give
several examples of how content addressable memory structures are useful in resolving programming
problems. For now, remember that the subscripts you encode to access individual array elements can be
either numeric or string variables.

Like many scripting languages, Rexx lacks complex data structures such as lists, trees, records, and the
like. These are unnecessary because by understanding content-addressable arrays it is easy to build
these structures. Rexx arrays provide the foundation to build any imaginable data structure. We’ll show
you how later in this chapter. First, let’s explore the basics of how to code arrays and process their data
elements.

The Basics
To approach the subject of arrays, let’s review the way variable names are created. The basis for Rexx
arrays are compound variable names or symbols. So far we’ve seen several kinds of symbols within Rexx:

❑ Constants — Literal strings or other values that cannot be changed.

❑ Simple symbols — Variable names that do not begin with a digit and do not contain any embed-
ded period(s).

❑ Compound symbols — The basis for arrays. Like simple symbols, they do not begin with a digit.
However, they contain one or more periods.

Dense versus Sparse Arrays

Element 1

Element 2

Element 3

Element 4

<empty>

<empty>

Element 1

<empty>

<empty>

Element 2

A Dense Array A Sparse Array

54

Chapter 4

Simple symbols are synonymous with variable names, as we have known them thus far, while compound
symbols contain one or more periods. Compound symbols are the basis for arrays.

In compound symbols, the stem is the part of the name up to and including the first period. The stem is
sometimes called a stem variable. The tail comprises one or more symbols separated by periods.

Here are a few examples:

❑ list.j—list is the name of an array or table.

❑ list.j—list. is the stem of the array. Note that the stem name includes the period.

❑ books.j.k—books. is the stem, j.k is the tail. j and k are two subscripts.

In these examples, Rexx substitutes in the value of the variables j and k before referencing into the
arrays. These values can be numbers, but they do not have to be. Rexx allows indexing into an array
based on any variable value you encode, whether it is numeric or a string value.

Here is a sample series of statements that refer to an array element based on a string value in a variable.
The first line below initializes all elements in an array to the null string (represented by two back-to-back
quotation marks). The second line assigns a value to a specific array element. The last two statements
show how a character string provides a subscript into the array to retrieve that data element from the
array:

fruit. = ‘’ /* initialize all array elements to the null string */

fruit.cherry = ‘Tasty!’ /* set the value of an array element */

subscript_string = cherry /* establish an index into the array */

say fruit.subscript_string /* displays: Tasty! */

It is probably worth noting that Rexx uppercases the string cherry into CHERRY in the subscript assign-
ment statement above because that character string is not enclosed in quotation marks. Rexx also upper-
cases variable names such as fruit.cherry into FRUIT.CHERRY internally. Had we coded
subscript_string = ‘cherry’ as the third line in the sample code, it would not work properly. The
array tail is uppercased internally by Rexx so the subscript string used for finding the data element must
also be uppercase.

What happens if you accidentally reference an array with a subscript that is not yet initialized? Recall
that in Rexx an uninitialized variable is always its own name in uppercase. So, if my_index has not yet
been assigned a value, my_array.my_index resolves to MY_ARRAY.MY_INDEX. Oops! This is probably
not what the programmer intended.

Initialize the array as a whole by referring to its stem. The dimensionality of the array does not matter to
this operation. We saw one example of initializing an entire array in one line of the sample code. Here
are some more examples:

list. = 0 /* initialize all possible entries in the array LIST to 0 */

books. = ‘’ /* initialize all possible entries in BOOKS array to null string */

55

Arrays

You cannot perform other kinds of operations on entire arrays by single statements — in most Rexx
implementations. For example, these statements are invalid and result in errors:

numbers. = numbers. + 5 /* add 5 to each entry in the NUMBERS array */

lista. = listb. /* move all contents of array LISTB

into the array LISTA */

To process all the elements in an array, use a do loop. This works as long as the array is indexed or sub-
scripted by numeric values, and each position, or slot, in the array contains a value. To process all the
elements in the array, you must keep track of the maximum subscript you use. There is no Rexx function
that returns the largest numeric subscript you’ve used for an array. Here is an example that shows how
to process all the elements of an array. In this code, each contiguous array position contains an element,
and the array subscript is numeric:

array_name. = ‘’ /* initialize all elements to some nonoccurring value */

number_of_elements = 5 /* initialize to the number of elements in the array */

/* place elements into the array here */

/* This code processes all elements in the array. */

do j = 1 to number_of_elements

say “Here’s an array element:” array_name.j

end

Another technique for array processing is to initialize the array to zeroes for numeric values, or to the
empty string or null string for character string entries (represented by two back-to-back quotation
marks ‘’). Then process the array starting at the beginning until you encounter an entry set to the ini-
tialization value. Here’s sample code that processes all elements of an array based on this approach:

array_name. = ‘’ /* initialize all array elements to some nonoccurring value */

/* place elements into the array here */

/* This code processes all elements in the array. */

do j = 1 while array_name.j <> ‘’

say “Here’s an array element:” array_name.j

end

If you take this approach, be sure that the value used for initialization never occurs in the data you place
into the array!

This approach also assumes a nonsparse, or dense, array — one in which the positions in the array have
been filled consecutively without skipping array slots or positions. For a sparse array, we recommend
storing the largest numeric subscript you use in a variable for future reference. Obviously, you cannot
simply process a sparse array until you encounter the array initialization value because some positions
within the array may not contain data items. In processing a sparse array, your code will have to be able

56

Chapter 4

to distinguish between array positions that contain valid values and those that do not. For this reason, it
is useful to initialize all sparse array elements to some unused default value (such as the null string or
zeroes) prior to using the array.

In many programming languages, you must be concerned with what the subscript of the first entry in a
table is. Is the first numeric subscript 0 or 1? In Rexx, the first subscript is whatever you use! So, input
the first array element into position 0 or 1 as you prefer:

array_name.0 = ‘first element’

or

array_name.1 = ‘first element’

Just be sure that whatever choice you make you remember and that you remain consistent in your
approach. This flexibility is a handy feature of content-addressable arrays.

As an informal convention, many Rexx programmers store the number of array elements in position 0,
then start storing data elements in position 1:

array_name.0 = 3 /* store number of elements in the array here */

array_name.1 = ‘first element’

array_name.2 = ‘second element’

array_name.3 = ‘last element’

Assuming that the array is not sparse and the index is numeric, process the entire array with code like this:

do j = 1 to array_name.0

say “Here’s an array element:” array_name.j

end

Placing the number of array elements into position 0 in the array is not required and is strictly an infor-
mal convention to which many Rexx programmers adhere. But it’s quite a useful one, and we recom-
mend it.

A Sample Program
This sample program illustrates basic array manipulation. The program defines two arrays. One holds
book titles along with three descriptors that describe each book. The other array contains keywords that
will be matched against the three descriptors for each book.

The user starts the program and inputs a “weight” as a command line parameter. Then the program lists
all books that have a count of descriptors that match a number of keywords at least equal to the weight.
This algorithm is called weighted retrieval, and it’s often used in library searches and by online biblio-
graphic search services.

57

Arrays

Here’s the entire program. The main concepts to understand in reviewing it are how the two arrays are
set up and initialized at the top of the program, and how they are processed in the body. The do loops
that process array elements are similar to the ones seen previously.

/* FIND BOOKS: */

/* */

/* This program illustrates basic arrays by retrieving book */

/* titles based on keyword weightings. */

keyword. = ‘’ /* initialize both arrays to all null strings */

title. = ‘’

/* the array of keywords to search for among the book descriptors */

keyword.1 = ‘earth’ ; keyword.2 = ‘computers’

keyword.3 = ‘life’ ; keyword.4 = ‘environment’

/* the array of book titles, each having 3 descriptors */

title.1 = ‘Saving Planet Earth’

title.1.1 = ‘earth’

title.1.2 = ‘environment’

title.1.3 = ‘life’

title.2 = ‘Computer Lifeforms’

title.2.1 = ‘life’

title.2.2 = ‘computers’

title.2.3 = ‘intelligence’

title.3 = ‘Algorithmic Insanity’

title.3.1 = ‘computers’

title.3.2 = ‘algorithms’

title.3.3 = ‘programming’

arg weight . /* get number keyword matches required for retrieval */

say ‘For weight of’ weight ‘retrieved titles are:’ /* output header */

do j=1 while title.j <> ‘’ /* look at each book */

count = 0

do k=1 while keyword.k <> ‘’ /* inspect its keywords */

do l=1 while title.j.l <> ‘’

if keyword.k = title.j.l then count = count + 1

end

end

if count >= weight then /* display titles matching the criteria */

say title.j

end

58

Chapter 4

The program shows that you can place more than one Rexx statement on a line by separating the state-
ments with a semicolon. We use this fact to initialize the searchable keywords. Here’s an example with
two statements on one line:

keyword.1 = ‘earth’ ; keyword.2 = ‘computers’

To implement the weighted-retrieval algorithm, the outermost do loop in the script processes each book,
one at a time. This loop uses the variable j as its subscript:

do j=1 while title.j <> ‘’ /* look at each book */

The do loop could have included the phrase by 1, but this is not necessary. Rexx automatically defaults
to incrementing the loop counter by 1 for each iteration. If we were to encode this same line and explic-
itly specify the increment, it would appear like this. Either approach works just fine:

do j=1 by 1 while title.j <> ‘’ /* look at each book */

The loop that processes each book, one at a time, is the outermost loop in the code. The next, inner loop
uses k as its control variable and processes all the keywords for one book:

do k=1 while keyword.k <> ‘’ /* inspect its keywords */

The innermost loop uses l for loop control and inspects the three descriptors for each book title. This
code totals how many of each book’s descriptors match keywords:

do l=1 while title.j.l <> ‘’

if keyword.k = title.j.l then count = count + 1

end

If the count or weight this loop totals is at least equal to that input as the command line argument, the
book matches the retrieval criteria and its title is displayed on the user’s screen.

This script is written such that the programmer does not need to keep track of how many variables any
of the arrays contain. The while keyword processes items in each do loop until a null entry (the null
string) is encountered. This technique works fine as long as these two conditions pertain:

❑ The script initializes each array to the null string.

❑ Each position or slot in the arrays is filled consecutively.

Its approach to array processing makes the program code independent of the number of books and key-
words it must process. This flexibility would allow the same algorithm to process input from files, for
example. So, it would be easy to eliminate the static assignment statements in this program and replace
them with variable input read in from one or more input files. You can see that the approach this script
takes to array processing provides great flexibility.

59

Arrays

