Rony G. Flatscher

Introduction to RExx and ooRexx

From Rexx to Open Object Rexx (0ooRexx)

Edition: 1.01, 2013-11-03 (Version 101.20131103)

Copyright © 2013 Rony G. Flatscher
http://www.RonyRexx.net

c/o WU Wien, Augasse 2-6, A-1090 Wien
All rights reserved.

Acknowledgements

The author thanks the following persons for their feedback, proof reading and
help in creating free Rexx-related art (in alphabetical order):

Gilbert Barmwater (U.S.A.): feedback, proof reading

Daniel A. Flatscher (Austria): proof reading

Howard Fosdick (U.S.A.): feedback, proof reading

René Vincent Jansen (The Netherlands): feedback, proof reading
Les Koehler (U.S.A.): feedback, proof reading

Gerald Leitner (Austria): feedback, proof reading

DI Walter Pachl (Austria): feedback, proof reading

Graham Wilson (South Africa): art including icons for BSF4ooRexx

Jon “Sahananda” Wolfers (United Kingdom): feedback, proof reading

Foreword

Foreword

A Brief History of the Rexx programming 1language. In 1979 Mike F.
Cowlishaw (MFC), an English gentleman working for IBM, devised a
“human centric” programming language for the IBM mainframes that was
easier to understand and to program than the arcane mainframe batch
language named Exec 2. The design work was carried out at the IBM
Research facilities in Hursley under the management of Dr. Brian Marks. It
was probably the first time in the history of programming language design
that IBMers interconnected worldwide via the IBM internal network were
able to influence the design by studying the distributed specifications and
giving feedback, like Les Koehler from IBM USA.

IBM later defined the REXX programming language to be the strategic
batch/scripting language on all of its operating systems via IBM's SAA
(System Application Architecture) standard. Another outstanding IBM
employee who has probably been the only person to create Rexx
interpreters multiple times for multiple operating systems is Rick McGuire,
who led the development and maintenance of the IBM SAA REXX interpreters.

The IBM lab in Vienna created a Rexx compiler for its mainframe REXX
(Klaus Hansjakob, Walter Pachl), which is being sold and maintained by IBM
to this very day.

Mike F. Cowlishaw documented the REXX language in a book named “The
Rexx Language” also known as “TRL’ and he later became one of the few
IBM Fellows' due to his continuing innovative and influential work (he is
also attributed to be the person who made Java a strategic language and
platform within IBM, having ported Java to the IBM OS/2 PC operating
system in the 90'ies).

The high impact of the Rexx language can be witnessed by the appearance
of numerous non-IBM implementations of the Rexx language, e.g. Regina
(open source, Anders Christensen, Mark Hessling), Rexx/imc (open source,
Ian M. Collier) or BREXX (open source, Vassilis N. Vlachoudis), but also
proprietary and commercial Rexx interpreters like ARexx (part of the Amiga
operating system), Novell Netware's Rexx (in the 90'ies), Workstation Unix

1" An IBM Fellow is free to research and to work, very much like professors at
Universities, who have the freedom to freely determine what they research and
what they teach.

iii

Foreword

Rexx. Some pointers to various Rexx interpreters can be found at
http://www.rexxla.org/rexxlang/mfc/rexxplat.html.

ANSI/INCITS REXX Standard. In 1996 the American National Standards
Institute (ANSI) working group X3J18 finalized the “American National
Standard for Information Systems - Programming Language REXX”. After
ANSI got renamed to “INCITS (InterNational Committee for Information
Technology Standards, http://www.incits.org/)” the respective standard was
named “INCITS 274 :1996 [R2001]”. In 2007 the INCITS 274 REXX
standard was extended for another period of ten years, reflecting the
importance of the Rexx language in the industry.

The INCITS 274 REXX standards on decimal arithmetic served as the basis for
defining decimal formats in IEE 754-2008 and ISO/IEC/IEEE 60559:2011. An
ANSI C implementation has been created by Mike F. Cowlishaw
(http://www.speleotrove.com/mfc/), who on behalf of IBM has been a driving
force behind standardizing decimal arithmetics in the context of IEEE, Java
JSR-13 and who also implemented an open source decNumber package in
ANSI C.

A Brief History of the ooRexx Language. At the end of the 80'ies
Dr. Brian Marks (t 2012) oversaw another interesting project, named “Oryx”
with the technical lead of Simon Nash. The aim of this project was to
experiment with a Rexx interpreter that extends the Rexx language with
object-oriented features. This work would later lead, under the auspices of
Rick McGuire, to the IBM product “Object REXX”. It was first distributed
with 0S/2 Warp 4 in 1997, versions for IBM AIX and MS Windows were
created and sold as well by IBM.

In 2004 IBM handed the source code of “Object REXX” over to the non-
profit special interest group (SIG) “Rexx Language Association (RexxLA,
http://www.RexxLA.org)”. RexxLA published the first open source version of
IBM's “Object REXX” as “Open Object Rexx 3.0 (http://www.ooRexx.org)” in
2005. The lead architect of this now open-source project has been Rick
McGuire, who has been working in his own time on the open source version
of ooRexx ever since.

What Is ooRexx?

* A “classic Rexx” interpreter. ooRexx runs any “classic Rexx” program
and can be used to write “classic Rexx” programs. There is no need to
use any of its new features that extend the Rexx language.

iv

Foreword

An object-oriented Rexx language, hence “ooRexx”: ooRexx comes
with many useful classes (data types) and offers state-of-the art
object-oriented features, devised in a “human-centric” way. Among
other great things, ooRexx makes it easy to create multithreaded Rexx
programs!

Fast and powerful: ooRexx is a fast Rexx interpreter. It is a very
powerful interpreter, which can be invoked from C++ or Java (via
BSF400Rexx) to allow Rexx and ooRexx macros/programs to run with
C++ and Java applications. For C++ and Java applications it is
possible to run multiple ooRexx interpreter instances in the same
process space, each of which may execute even multithreaded Rexx
code!

Great documentation: IBM not only donated the source code for open
sourcing to RexxLA, but also the excellent and professional technical
documentation, which has been kept up-to-date. All the ooRexx
documentation is available in the form of HTML and PDF-files, which
can be nicely printed as books. The documentation is also directly
available via the Internet: http://www.oorexx.org/docs/.

Free and open source: originally created by IBM and marketed as
“Object REXX”, RexxLLA received the sources for publishing,
maintaining, and enhancing this powerful Rexx interpreter. RexxLA
distributes ooRexx with source code for free: http://www.ooRexx.org.

Multiplatform: ooRexx is available in 32 and 64 bit versions for the
operating systems AIX, Linux, MacOSX, Windows, and can be built for
any Unix implementation. Rexx programs written in one operating
system environment can execute in any other operating system
environment.

Extensible: ooRexx comes with a powerful and easy to use C++ API
which is documented in one of the accompanying ooRexx
documentation PDFs (cf. rexxpg.pdf). This allows you to extend
ooRexx with functions and methods implemented in C++, but also to
bridge Rexx with other programming infrastructures like Java (cf.
“BSF400Rexx”). In addition it allows C++ applications to create Rexx
interpreter instances which execute Rexx programs. This way it is
fairly easy/simple to employ ooRexx as a macro language for any C++

Foreword

applications. The BSF400Rexx extension package provides the same
functionality for Java applications.

The author wishes to acknowledge the following persons important to the
Rexx world in the context of RexxLLA in alphabetic order: Gil Barmwater
(vice president), Mike F. Cowlishaw (honorary board member), Chip Davis
(past president), Mark Hessling (board member), René Vincent Jansen
(current president), Les Koehler (secretary/treasurer), Lee Peedin (past
president), Pam Taylor (board member), Jon “Sahananda” Wolfers (board
member).

Of course all the developers of ooRexx (including past) are acknowledged
hereby (in alphabetic order): David Ashley, Jean-Louis Faucher, Mark
Hessling, Moritz Hoffmann, Rick McGuire, Mark Miesfeld, Lee Peedin,
David Ruggles, Bruce Skelly, Rainer Tammer, Jon Wolfers.

vi

About this Book

About this Book

This book introduces the programming language Open Object Rexx, also
known as "ooRexx" in two steps:

1. Chapter 1 'The Rexx Language (“Everything Is a String”)' introduces
the Rexx programming language that was created in 1979 by the IBM
employee Mike F. Cowlishaw who later became an IBM Fellow due to
his work on Rexx. The most important design philosophy for the
language was the principle of "human-orientation", making it easy for
programmers to create programs in the Rexx language compared to
the arcane IBM mainframe batch language Exec 2 which Rexx
successfully replaced. One key success factor of the Rexx language has
been its easy English-like syntax that makes it easy to learn, fast to
comprehend, easy to apply and inexpensive to maintain. Rexx
programs can be read almost like prose. As ooRexx is backwardly
compatible to Rexx it can be used to learn Rexx and thereby the
fundamentals of programming. The concepts in this chapter apply
generally to all existing Rexx interpreters, which sometimes are called
“classic Rexx” interpreters (as opposed to ooRexx, which is a leading
edge Rexx interpreter that extends classic Rexx nicely into the object-
oriented world). ooRexx-only features are highlighted in the text.

2. Chapter 2 'Extensions to the Rexx Language by ooRexx' documents
the ooRexx-only keyword instructions (LOOP, RAISE, USE) and
enhancements to the Rexx language like short hand assignment
operators (e.g. “+=") and the directives ::routine and ::requires that
may prove quite helpful to “classic Rexx” programmers.

3. Chapter 3 'The ooRexx Language (“Everything Is an Object”)' builds
upon the previous chapters and introduces the fundamental concepts
of what is known as the "object-oriented (OO) paradigm". This is
followed by an overview of the numerous new classes (data types) that
come with ooRexx and which could be exploited by Rexx programmers
to ease their programming life considerably in most cases. At the end
of this chapter the reader should understand the OO-concepts and be
able to take advantage of these new, powerful features!

4. Chapter '4 Reaching Out with ooRexx' opens with useful information
about the ooRexx runtime system, followed by a categorized overview

vii

About this Book

of the ooRexx classes (data types, types) that are installed with the
interpreter. The ooRexx programmer can directly use these ooRexx
classes and take advantage of the features they implement.

5. Chapter 5 'Advanced Topics' introduces the interested reader to
defining and implementing Rexx classes (data types), which is very
easy and straight-forward. For those programmers who need the
ability to create Rexx programs in which parts are executed
concurrently, there is a concluding section which explains and
demonstrates how easy it is to do that with ooRexx.

The structure and contents of the book are aimed at people who are
interested in learning programming in Rexx and afterwards ooRexx. Still, it
aims to introduce and demonstrate the concepts in a very concise, yet
understandable manner. The reader is advised to consult the excellent
ooRexx reference documentation, which completely documents ooRexx and is
available as a nicely formatted PDF-book, named rexxref.pdf
(http://www.oorexx.org/docs/rexxref/rexxref.pdf).

The way this book is written should also allow professional programmers to
skim the book and learn about the fundamentals of Rexx and ooRexx by
looking out for the definition boxes that are formatted like this:

This is how a definition box is formatted. Definition boxes allow you to
quickly get (re-)acquainted with the fundamental concepts that are
taught in a chapter. This book will sometimes directly use the definitions
of the ANSI/INCITS Rexx standard if possible in this book's context.

In addition, numerous little "nutshell programs" or "code snippets"
demonstrate how to apply the introduced concepts. These programs, as
short as they may seem, are full programs that can be executed as is by the
ooRexx interpreter, yielding the output that is sometimes depicted alongside
the program as well. "Nutshell programs" are formatted like this:

say "Hello world, this is Rexx speaking"

The above program will output the string Hello world, this 1is Rexx
speaking.

Alternatively, ooRexx for Windows comes with a GUI program (menu entry
named “Try Rexx (GUI)”) which allows you to enter Rexx code and execute it
with the push of a button. ooRexx users on Linux or MacOSX might want to

viii

About this Book

install BSF4o0oRexx? (https://sourceforge.net/projects/bsfdoorexx/files/
GA/) which comes with a comparable GUI program (menu entry named “GUI
RexxTry Program (ooRexxTry.rxj)”).

Finally, ooRexx can be downloaded for free from one of the following
locations:

* http://www.oorexx.org/download.html
* https://sourceforge.net/projects/oorexx/files/

There are editors that support Rexx syntax highlighting, for example the
following two free and open source editors:

« “The Hessling Editor (THE)”, which uses Rexx as its macro language,
URL: http://hessling-editor.sourceforge.net/

 “vim (vi improved)”, a part of many Linux distributions, is generally
available for all operating systems, URL: http://www.vim.org/

2 This GUI program is also available for Windows, if “BSF4o00Rexx” gets installed
there. “BSF4ooRexx” is an ooRexx external function package that allows ooRexx
programs to interact directly with Java, which gets camouflaged as ooRexx. At
the time of writing this external function package is available for Linux, MacOSX
and Windows. Cf. 4.1 Exploiting Java on All Platforms, p. 157 below.

ix

Table of Contents

Table of Contents

Acknowledgements 2
Foreword iii
About this Book vii
Table of Contents xi
List of Figures XV
List of Tables XV
List of Codes (Nutshell Examples) XV
Part I 21
1 The Rexx Language (“Everything Is a String”) 23
1.1 “Hello world!” in Rexx 23
1.2 Fundamental Language Concepts 24
1.3 Building Blocks and Definitions 26
1.3.1 Characters Allowed in a Rexx Program 26
1.3.2 Comments 27
1.3.3 Literal Strings 28
1.3.4 String Values 29
1.3.5 Symbols (Names) 30
1.3.6 Environment Symbols (ooRexx) 31
1.3.7 Operators 31
1.3.8 Expressions 34
1.3.8.1 Functions 34
1.3.8.2 String Concatenation Expressions 38
1.3.8.3 Arithmetic Expressions 39
1.3.8.4 Boolean Expressions 41
1.3.8.4.1 Comparisons 41
Comparing String Values 41
Comparing Numbers 42

1.3.8.4.2 Negator 43

1.3.8.4.3 Combining Boolean Values 43

1.3.9 Clauses 45
1.3.10 Normalizing Clauses (“Behind the Curtain”) 46

1.4 Writing Rexx Programs 49
1.4.1 Assignment Instructions (Variables) 49
1.4.1.1 Shorthand Assignment Instructions (ooRexx) 50
1.4.1.2 Stem Variables 51
1.4.1.3 Variable Names that Rexx May Use Without Notice 52

1.4.2 Label Instructions (CALL, SIGNAL, EXIT, RETURN, PROCEDURE,
EXPOSE Keyword Instructions) 53
1.4.3 Message Instructions (ooRexx) 59
1.4.4 Keyword Instructions 6l
1.4.4.1 SAY (Output of Strings) 64
1.4.4.2 IF (Choose) 64
1.4.4.3 SELECT (Alternatives), LEAVE (ooRexx) 65
1.4.4.4 DO (Block), ITERATE, LEAVE 66
1.4.4.5 LOOP (ooRexx), ITERATE, LEAVE 72

xi

Table of Contents

1.4.4.6 The Rexx QUEUE (PUSH, QUEUE, PARSE PULL, PULL)

1.4.
.7.1 Parsing Using a Blank Delimited Template
.7.2 Parsing Using Literal Strings as Delimiter
.7.3 Parsing Using Positions and Lengths

.7.4 PARSE VALUE

.7.5 PARSE ARG, ARG

.7.6 PARSE PULL, PULL

.7.7 PARSE SOURCE

1.4.4.9 INTERPRET
1.4.5 Command Instructions, ADDRESS
2 Extensions to the Rexx Language by ooRexx
2.1 USE ARG

2.2 Trapping and Raising Conditions (SIGNAL|CALL ON|OFF, RAISE)

2.3 Directives
2.3.1 The ::ROUTINE Directive
2.3.2 The ::REQUIRES Directive
2.4 The Big Picture
Part II
3 The ooRexx Language (“Everything Is an Object”)
3.1 Running ooRexx Programs
3.1. 1 Runtime Environment
3.1 Objects (Values, Instances), Classes (Data Types)
.2.1 Messages: Interacting with Objects
.2.2 Classes: Attributes, Methods
.2.3 Classes (Data Types) Organized as a Class Hierarchy
.2.4 Unknown Messages
oRexx Built-in Classes
ategorizing the ooRexx Classes
The Fundamental ooRexx Classes
.2.1 The .Object Class
.2.2 The .Class Class (the ooRexx Metaclass)
.2.3 The .Method Class
2.4 The .Message Class
.2.5 The .Routine Class
2
3.
3.
3.

w
gwwww

wwN
'—‘CD il el

0
C

.6 The .Package Class

w0

1 The .String Class

2 The .Stem Class

3 The .Stream Class

ooRexx Collection Classes

he .OrderedCollection Classes
.1 The .Array Class
.2 The .List Class
.3 The .Queue Class

w
w!\wawNpopawpopawNN

—]

»—\n—\n—\

xii

72
74
74
76
77
80
81
82
82
83
83
84
85
87
88
89
93
93
98
101
103
105
106
107
109
109
110
112
114
115
115
115
116
117
119
120
121
122
123
123
125
127
128
130
130
133
134

Table of Contents

.1.4 The .CircularQueue Class

The .MapCollection Classes

.2.1 The .Directory Class

.2.2 The .Relation Class

.2.3 The .Table Class

The .SetCollection Classes

.3.1 The .Bag Class

.3.2 The .Set Class

Setlike Operations on Collections

.1 Example: Setlike Operations with .Bag and .Bag
.2 Example: Setlike Operations with .Set and .Bag
.3 Example: Setlike Operations with .Bag and .Set
llaneous ooRexx Classes

1 The .Alarm Class

2 The .Comparator Classes

.3 The .DateTime and .TimeSpan Classes

4

5

ST

The .File Class
The .Monitor Class
.6 The .MutableBuffer Class
.7 The .RexxContext Class
4 Reaching Out with ooRexx
4.1 Exploiting Java on All Platforms
4.1.1 A Brief Overview of BSF4o0Rexx
4.1.1.1 BSF4o00Rexx Menu
4.1.1.2 ooRexxTry.rxj - A Platform Independent GUI for ooRexx
1.2 The ooRexx Package BSFE.CLS
1.3 The ooRexx Package UNO.CLS
1.4 Further Information
Windows Platform Only
2.1 A Brief Overview of COM, OLE, ActiveX
2.2 The .OLEODbject Class
4.2.2.1 Rosetta Stone: Visual Basic to/from ooRexx
4.2.2.2 Some Further Information
4.2.3 The ooDialog Framework
4.2.4 Additional ooRexx Windows Classes
5 Advanced Topics
5.1 A Few Things that Might Be Helpful to Know
.1.1 About ooRexx Directives
.2 About ooRexx Scopes
About the .methods Environment Symbol
About Cascading Messages
About Required String Values
About Special ooRexx Methods
1 Method “init” (Constructor)
2 Method “unlInit” (Destructor)
3 Method “unknown”
4 Method “string”

W W W wWwww

4.

4.

4.
4.2
4.
4.

.6.
.6.
.6.
.6.

135
136
137
140
142
142
143
144
145
146
147
148
149
149
150
151
153
154
155
156
157
157
158
158
159
160
162
166
168
169
170
174
179
180
181
183
183
183
184
185
186
187
188
189
189
191
191

xiii

Table of Contents

5.1.6.5 Method “makeString” 192
5.1.6.6 Method “makeArray” 194
5.1.6.7 Comparison Methods 194

5.2 Defining ooRexx Classes 201
5.2.1 Abstract Data Type (ADT) 201
5.2.2 Implementing an ADT with Directives (::CLASS, ::METHOD,
:ATTRIBUTE, ::CONSTANT Directives) 203
5.2.2.1 The ::CLASS Directive 203
5.2.2.2 The ::ATTRIBUTE and the ::METHOD Directives 205
5.2.2.2.1 Method Scope (EXPOSE) 210
5.2.2.2.2 “Self” and “Super” in Method Routines 210
5.2.2.2.3 FORWARD 212
5.2.2.3 The ::CONSTANT Directive 212
5.2.3 Examples 213
5.2.3.1 Creating a Hierarchy of Classes 213
5.2.3.2 Employing Multiple Inheritance 215

5.3 Multithreaded Programming 217
5.3.1 REPLY, .Alarm, .Object and .Message 218
5.3.1.1 REPLY 218
5.3.1.2 The .Alarm Class 220
5.3.1.3 Method “start” of the .Object Class 221
5.3.1.4 Method “start” of the .Message Class 221
5.3.2 Synchronizing Rexx Threads (GUARD) 222
5.3.2.1 Synchronizing Concurrently Running Method Routines ... 223
5.3.2.2 Waiter 226
5.3.2.3 Producer and Consumer 228
Index 233
Some oo|Rexx-Related World-Wide-Web Links ccliv

Xiv

List of Figures

List of Figures

Figure 1: .bsfDialog's messageBox on Linux, MacOSX and Windows.

Figure 2: ooRexxTry.rxj:a Portable GUI for Experimenting with ooRexx.

Figure 3: LibreOffice Writer on Linux.

Figure 4: Apache OpenOffice Writer on MacOSX.
Figure 5: Apache OpenOffice Writer on Windows.
Figure 6: Windows Script Host (wsh) Popup.

Figure 7: ooRexx Homepage (http://www.ooRexx.org).
Figure 8: ooDialog's Example "New List Controls".

List of Tables

Table 1: Rexx Operators.

Table 2: Overview of the Rexx Built-in Functions (BIFs).
Table 3: Combining Boolean Values with "&" (AND).

Table 4: Combining Boolean Values with "|" (OR).

Table 5: Combining Boolean Values with "&&" (XOR).
Table 8: Some Methods of the ooRexx Root Class "Object".
Table 9: Some Methods of the ooRexx Meta Class "Class".

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:

Some Methods of the ooRexx Class "Method".
Some Methods of the ooRexx Class "Message".
Some Methods of the ooRexx Class "Routine".
Some Methods of the ooRexx Class "Package".
Some Methods of the ooRexx Class "String".

Some Methods of the ooRexx Class "Stream".
Some Methods of the ooRexx Class "DateTime".
Some Methods of the ooRexx Class "TimeSpan".
Some Methods of the ooRexx Class "File".

Some Methods of the ooRexx Class "MutableBuffer".
Some Methods of the ooRexx Class "RexxContext".
Some Methods of the ooRexx Class "OLEObject".

List of Codes (Nutshell Examples)

Code 1.1-1:
: Nested Block Comments.

: Line Comment.

: Rexx Clauses and Semicolons.

: Rexx Clauses (Using Comma, Dash and Semicolons).

: Rexx Program with a Null Clause.

: Rexx Clause, Spreading Over Five Lines with Whitespace.
: Normalized Clause.

: Stem Variables.

: Stem Defined with a Default Value.

: Stem Array.

: Transferring Control to a Label with SIGNAL.

: Transferring Control to a Label with CALL.

“Hello world!"

162
164
165
166
166
171
174
181

33

37

43

44

44
116
118
119
121
121
122
124
127
152
152
153
155
156
171

23
27
28
45
46
46
48
48
51
o1
52
54
54

XV

List of Codes (Nutshell Examples)

Code 1.4-6: Invoking an Internal Routine as a Function.

Code 1.4-7: Calling an Internal Routine, that Returns a Value.

Code 1.4-8: Fetching Arguments Using the ARG() BIF.

Code 1.4-9: Changing Variables from the Caller in an Internal Routine.

Code 1.4-10: Procedure Scope - Insulating Caller's Variables.

Code 1.4-11: Procedure Scope - Exposing One Caller's Variable.

Code 1.4-12: Procedure Scope - Exposing a Stem from the Caller.

Code 1.4-13: Using a Stem Array from the RexxUtil Function
SysFileTree().

Code 1.4-14: Message Instructions.

Code 1.4-15: Demonstrating the SAY Keyword Instruction.

Code 1.4-16: Demonstrating the IF Keyword Instruction.

Code 1.4-17: Demonstrating the IF Keyword Instruction with ELSE.

Code 1.4-18: Demonstrating the Clause Borders by Semicolons.

Code 1.4-19: An Alternative for Formatting an IF Keyword Instruction.

Code 1.4-20: Demonstrating the select Keyword Instruction.

Code 1.4-21: Demonstrating the do Keyword Instruction.

Code 1.4-22: Demonstrating the do Keyword Instruction with Repetition.

Code 1.4-23: Demonstrating the do Keyword Instruction with Repetition.

Code 1.4-24: Demonstrating Repetition with a Control Variable.

Code 1.4-25: Demonstrating Repetition with a Control Variable.

Code 1.4-26: Demonstrating Repetition with a Control Variable.

Code 1.4-27: Using an Explicit Label Subkeyword.

Code 1.4-28: Using the do Keyword Instruction with the WHILE
Subkeyword.

Code 1.4-29: Using the do Keyword Instruction with the WHILE
Subkeyword.

Code 1.4-30: Using the do Keyword Instruction with the UNTIL
Subkeyword.

Code 1.4-31: Using the LEAVE and ITERATE Keyword Instructions.

Code 1.4-32: Using the FOREVER Keyword Instruction.

Code 1.4-33: Using the DO...over Keyword Instruction.

Code 1.4-34: Using the LOOP Keyword Instruction.

Code 1.4-35: Using the QUEUE, PUSH, PULL and PARSE PULL Keyword
Instructions.

Code 1.4-36: Accessing the Output of an External Command via
rxqueue.

Code 1.4-37: Using the PARSE Keyword Instruction.

Code 1.4-38: Using the PARSE Keyword Instruction, Version 2.

Code 1.4-39: Using the PARSE Keyword Instruction with Literal Strings.

Code 1.4-40: Using the PARSE Keyword Instruction with an Expression.

Code 1.4-41: Using the PARSE Keyword Instruction with Expressions.

Code 1.4-42: Using the PARSE Keyword Instruction with Positions and
Lengths.

Code 1.4-43: Using the PARSE Keyword Instruction with Absolute
Positions.

XVi

55
55
55
56
57
57
58

59
60
64
64
65
65
65
66
66
67
67
68
68
68
69

69

69

70
70
71
71
72

73

73
74
75
76
77
77

78

79

List of Codes (Nutshell Examples)

Code 1.4-44: Using the PARSE Keyword Instruction with Relative
Positions.

Code 1.4-45: Using the PARSE Keyword Instruction with Relative
Positions.

Code 1.4-46: Using the PARSE VALUE Keyword Instruction.

Code 1.4-47: Using the PARSE VALUE Keyword Instruction with
Parantheses.

Code 1.4-48: Using the PARSE ARG Keyword Instruction with
Parantheses.

Code 1.4-49: Using the PARSE PULL Keyword Instruction.

Code 1.4-50: Using the PARSE SOURCE Keyword Instruction.

Code 1.4-51: Using the PARSE VERSION Keyword Instruction.

Code 1.4-52: Using the TRACE Keyword Instruction.

Code 1.4-53: Using the INTERPRET Keyword Instruction.

Code 1.4-54: Demonstrating a Command Instruction.

Code 1.4-55: Demonstrating Command Instructions to the THE Editor.

Code 2.1-1: Using the USE Keyword Instruction.

Code 2.1-2: Using the USE Keyword Instruction with the strict
Subkeyword.

Code 2.2-1: Trapping a SYNTAX Condition.

Code 2.2-2: Trapping a NOVALUE Condition.

Code 2.2-3: Using the RAISE Keyword Instruction.

Code 2.2-4: Using the RAISE Keyword Instruction and Trapping the
Condition.

Code 2.3-1: Demonstrating the Routine Directive.

Code 2.3-2: Routine Directive and Trapping User Defined Conditions.
Code 2.3-3: Routine Directive and Trapping User Defined Conditions.

Code 2.3-4: pl.rex calls p2.rex.

Code 2.3-5: p2.rex calls p3.rex.

Code 2.3-6: p3.rex calls p4.rex.

Code 2.3-7: p4.rex.

Code 2.3-8: pl.rex requires p2.rex.

Code 2.3-9: p2.rex requires p3.rex.

Code 2.3-10: p3.rex requires p4.rex.

Code 2.3-11: p4.rex.

Code 3-1: Mixing String Functions and Message instructions.

Code 3.1-1: The Runtime Environment and Environment Symbols.

Code 3.1-2: Sending Messages to Objects (Values, Instances).

Code 3.1-3: Using the Runtime Environment with Environment
Symbols.

Code 3.1-4: Constructor and Destructor Method Routines.

Code 3.1-5: Resolving Methods Using the Class Hierarchy.

Code 3.1-6: Unknown Method Routine.

Code 3.2-1: Demonstrating Using Some Methods of .Object.

Code 3.2-2: Demonstrating Using Some Methods of .Class.

Code 3.2-3: Demonstrating Using Some Methods of .Method.

Code 3.2-4: Demonstrating Using Some Methods of .Message.

79

80
80

81

81
82
83
83
84
85
86
86
88

89
91
92
92

93
94
95
96
97
97
97
98
99
99
99
100
106
109
110

111
112
113
114
117
119
120
121

xvii

List of Codes (Nutshell Examples)

2-5: Demonstrating Using Some Methods of .Routine.

2-6: Demonstrating Using Some Methods of .Package.

.2-7: Demonstrating Using Some Methods of .String.

2-8: Using Stems the Classic Rexx Style.

2-9: Intermixing Classic Rexx Stem Access and Methods of

Code 3.2-10: Demonstrating Using Some Methods of .Stem.

Code 3.2-11: Demonstrating Using Some Methods of .Stream.

Code 3.2-12: Single Dimensioned .Array.

Code 3.2-13: Two-dimensional .Array.

Code 3.2-14: Sorting a Single Dimensioned .Array.

Code 3.2-15: Sorting a Single Dimensioned .Array With a Comparator.

Code 3.2-16: Using a .List to Collect and Process Objects.

Code 3.2-17: Using a .Queue to Collect and Process Objects.

Code 3.2-18: Using a .CircularQueue to Collect and Process Objects.

Code 3.2-19: Using a .Directory to Collect and Process Objects.

Code 3.2-20: Using the .local Directory to Collect and Process Objects.

Code 3.2-21: Using a .Relation to Collect and Process Objects.

Code 3.2-22: Using a .Table to Collect and Process Objects.

Code 3.2-23: Using a .Bag to Collect and Process Objects.

Code 3.2-24: Using a .Set to Collect and Process Objects.

Code 3.2-25: Setlike Operations with a .Bag and a .Bag.

Code 3.2-26: Setlike Operations with a .Set and a .Bag.

Code 3.2-27: Setlike Operations with a .Bag and a .Set.

Code 3.2-28: Demonstrating .Alarm.

Code 3.2-29: Demonstrating a Custom .Comparator for Sorting an
Array.

Code 3.2-30: Demonstrating .DateTime and .TimeSpan.

Code 3.2-31: Demonstrating .File.

Code 3.2-32: Using the .output Monitor.

Code 3.2-33: Demonstrating .MutableBuffer.

Code 3.2-34: Using .context (a .RexxContext).

Code 4.1-1: Using a Java Object as If It Was an ooRexx Object.

Code 4.1-2: Using a Java Dialog as If It Was From an ooRexx Class.

Code 4.1-3: Using Java to Interact with Apache OpenOffice/LibreOffice.

Code 4.2-1: Using a Windows Object as If It Was an ooRexx Object.

Code 4.2-2: Using an Internet Explorer Object as If It Was an ooRexx
Object.

Code 4.2-3: A Visual Basic Script (VBS) Program.

Code 4.2-4: An ooRexx Program Matching the Above VBS Program.

Code 4.2-5: A Visual Basic Application (VBA) Program.

Code 4.2-6: An ooRexx Program Matching the Above VBA Program..

Code 5.1-1: .methods Collecting Floating Methods.

Code 5.1-2: Using Messages.

Code 5.1-3: Using Cascading Messages.

Code 5.1-4: Demonstrating the Required String Value.

Code 5.1-5: Using a Constructor Method Routine.

xviii

122
123
125
125

126
126
128
131
132
132
133
134
135
136
138
139
141
142
143
144
146
147
148
149

151
152
153
154
155
156
161
162
163
172

173
177
177
178
178
185
186
187
188
189

List of Codes (Nutshell Examples)

Code 5.1-6: Using a Destructor Method Routine. 190
Code 5.1-7: Using an UNKNOWN Method Routine. 191
Code 5.1-8: Using a STRING Method Routine. 192
Code 5.1-9: Using a MAKESTRING Method Routine. 193
Code 5.1-10: Using a MAKEARRAY Method Routine. 194
Code 5.1-11: Implementing a Comparison Method Routine named "=". . 196
Code 5.1-12: Implementing a Method Routine named compareTo. 197
Code 5.1-13: Inheriting from Orderable and Implementing the Abstract

Method compareTo. 198
Code 5.1-14: Implementing Comparator Method Routines. 200
Code 5.2-1: Implementing the ADT Birthday. 203
Code 5.2-2: Implementing the ADT Person. 203
Code 5.2-3: Implementing the ADT Birthday. 205
Code 5.2-4: Implementing the ADT Person. 205
Code 5.2-5: Get and Set Methods the ooRexx Interpreter Creates. 206
Code 5.2-6: Example for a Method Routine. 207
Code 5.2-7: Implementation of the ADT Birthday. 208
Code 5.2-8: Implementation of the ADT Person. 209
Code 5.2-9: Method Routine Accesses Attribute NAME Directly. 210
Code 5.2-10: self and super in Method Routines. 211
Code 5.2-11: Using the FORWARD Keyword Instruction. 212
Code 5.2-12: Demonstrating the ::CONSTANT Directive. 213
Code 5.2-13: Using a Class Hierarchy. 214
Code 5.2-14: Multiple Inheritance (AmphibianVehicle class specializes the

RoadVehicle class and inherits from the WaterVehicle). 216
Code 5.2-15: Multiple Inheritance (AmphibianVehicle class specializes the

WaterVehicle class and inherits from the RoadVehicle). 217
Code 5.3-1: Starting Multithreading with the REPLY Keyword

Instruction. 219
Code 5.3-2: Starting Multithreading with the .Alarm. 220
Code 5.3-3: Starting Multithreading with .Object's start Method. 221
Code 5.3-4: Starting Multithreading with .Message's start Method. 222
Code 5.3-5: Synchronizing Threads with the GUARD Keyword

Instruction. 225
Code 5.3-6: Waiting for Threads. 227

Code 5.3-7: Synchronizing Producer with Consumer. 230

Xix

Part 1

Part |

The Rexx Language (“Everything Is a String”)

21

1 The Rexx Language (“Everything Is a String”)

1 The Rexx Language (“Everything Is a
String”)

This chapter aims to introduce the Rexx language so as to enable the reader
to use any (classic) Rexx interpreter like Regina, IBM host (mainframe) Rexx
implementations and of course the ooRexx interpreter, which is compatible to
Rexx. In order to achieve this goal any usage of specific ooRexx extensions
(features) will be noted explicitly.

1.1 “Hello world!” in Rexx

It has become a custom to demonstrate the characteristics of a
programming language by writing a small program that outputs the string
Hello world!:

say "Hello world!"
Code 1.1-1: “Hello world!"

This small program demonstrates the English keyword instruction SAY
(which indicates its purpose) and is followed by a literal string enclosed in
double-quotes. Please note that Rexx is “caseless”, so it does not matter in
which case the SAY keyword instruction was spelled, hence all the following
spellings are fine and are taken to mean the SAY keyword instruction: SAY,
Say, saY, SaY, sAY, SAy, say.

Rexx programs are made of plain text and get saved in plain (ASCII) text
files with a file extension of .rex. If the above Rexx program was saved in a
file named hello.rex, then this Rexx program can be executed by entering
the command rexx hello.rex on the command line. After pressing the return
key <« the Rexx interpreter loads the Rexx program from the text file
hello.rex and executes it line by line. The SAY keyword instruction will
output the given literal string, which will show the following result in the
command line window:

Hello world!

It is also possible to run Rexx programs via the graphical user interface of
the operating system by double-clicking the file directly in the folder.
Alternatively, one may hover the mouse over the Rexx file, press the right
mouse-button to open the context menu and choose Run from the menu. In
this case the operating system will open a command line window and have

23

1.1 “Hello world!” in Rexx

the Rexx interpreter execute the Rexx program. Upon termination of the
Rexx program, the command line window will be closed automatically as
well by the operating system. On modern computers this will be so fast that
the user might not notice these steps, apart from maybe a brief flicker.

< Hint: to keep the command line window open in this use case, add the
statement PARSE PULL xyz as the last instruction in your Rexx program.
This instruction will wait for user input via the keyboard and assign the
input to the indicated variable once the user presses the return key <
Only thereafter will the Rexx program terminate and the operating
system would close the command line window. Our program may
therefore be rewritten like this:

SAY "Hello world!"
PARSE PULL xyz

Running the above Rexx program will output the string Hello world!
and then process the PARSE PULL keyword instruction which waits for
the user to enter something via the keyboard. After pressing the return
key < the PARSE PULL instruction will assign the keyboard input to the
variable xyz and as there are no more instructions left in the program
the Rexx interpreter will stop executing and return control to the
operating system.

1.2 Fundamental Language Concepts

The author of the Rexx language, Michael F. Cowlishaw, discusses the
design principles of the REXX language in his book “The REXX Language”:?

* Readability: the structure of the syntax and the names of the keyword
instructions should be easily readable. Although Rexx does not
distinguish between lower- and uppercase, one can use case to make
programs more legible.

* Natural data typing: unlike many languages, Rexx is not strongly
typed. Everything is a string and its meaning depends only on its
usage. For example, arithmetic operations would cause the
interpreter to check whether the string operands contained valid
numbers to carry out the desired arithmetic and would raise a
runtime error if not.

3 The following list of language concepts is taken from http://speleotrove.com/
rexxhist/TRL-background.pdf (as of March 2013), made available to the public by
Mike F. Cowlishaw .

24

1 The Rexx Language (“Everything Is a String”)

« Emphasis on symbolic manipulation: as everything in Rexx is a string
there is a rich set of string manipulation operators and functions. One
of the most common string operations is concatenation for which Rexx
supplies two different means: concatenating strings by intervening
white space (space or tabulator character) which becomes part of the
concatenated string or by an explicit concatenation operator (two
vertical bars, ||) that concatenates two strings without an intervening
blank.

« Dynamic scoping: Rexx scoping adheres to the execution sequence of
Rexx clauses as defined by the programmer.

» Nothing to declare: there is no mechanism for defining variables. If a
variable is needed one can use a variable symbol.

« System independence: the language is defined in a manner which
makes it independent of the hardware and system software (although
it is possible to interact with the environment).

 Limited span syntactic units: syntactic units in Rexx are usually
clauses, which span a single line only. If an error is detected or a
program is traced, then these units are used to give the programmer
good diagnostics.

* Dealing with reality: although consistency has been a major design
goal, if in real use it creates unexpected side effects, then these were
addressed in the language's design as was the case with the TRACE
keyword instruction.

» Be adaptable: Rexx does not reserve any keywords, such that the
language can be adapted without unexpected side effects should new
keyword instructions be needed.

 Keep the language small: features were only added, if they were of
use for a significant number of users. A small language can be learned
fast and memorized for a long time.

 No defined size or shape limits: the Rexx language does not define
any limits on the size or shape of its Tokens* or data.®

* A Token ist the unit of low-level syntax from which one constructs Rexx clauses.
Cf. subsection ??, p. 45 below.

Different implementations of Rexx interpreters may have implementation
dependent limits.

5

25

1.2 Fundamental Language Concepts

All of these concepts should foster the definition of a “human centric”
language.

1.3 Building Blocks and Definitions

This section defines the allowable characters to create Rexx programs and
the building blocks of a Rexx program.

1.3.1 Characters Allowed in a Rexx Program

A Rexx program may consist of the following characters:
» alphabetical lowercase characters: abcdefghijklmnopqrstuvwxyz
» alphabetical uppercase characters: ABCDEFGHIJLMNOPQRSTUVWXYZ
» digit characters: 0123456789

» the following characters: ! (exclamation mark), ? (question mark), _
(underscore)

» the following special characters for defining clauses and expressions
(each of the following characters is regarded to be a Token that can be
distinguished from any other Token in a clause): ; (semicolon),
: (colon), . (dot), + (plus), - (minus), * (asterisk), / (slash) , (comma),
= (equal sign), | (vertical bar), \ (backslash), - (“not” character),
((open parenthesis),) (close parenthesis)

* in addition, the following special characters in ooRexx (each of the
following characters is regarded to be a Token that can be
distinguished from any other 7Token in a clause): ~ (tilde), [(square
open parenthesis),] (square close parenthesis)

* whitespace (non-visible) characters: space/blank character (_) and
tabulator character (=)

In addition literal (quoted) strings and comments may contain any
character.

The allowable characters can be used for different purposes when writing
Rexx programs.

26

