second edition

THE SNOBOL4
PROGRAMMING
LANGUAGE

Bell Telephone Lahoratories, Incorporated

Reprinted electronically in 2005 by Ron Stephens & Catspaw, Inc.
by permission of AT&T.

Copyright © Bell Telephone Laboratories, Incorporated, 1971, 1968

Permission is granted to make and distribute verbatim
copies of this book provided the copyright notice and
permission notice are preserved on all copies.

(Originally published by Prentice Hall, Inc., ISBN 13-815373-6)

Library of Congress Catalog Card Number: 70-131996

Printed in the United Stated of America

World Wide Web sites for additional SNOBOL4 material:
Catspaw, Inc. www.SNOBOL4.com
Phil Budne’s SNOBOL4 resources www.SNOBOL4.org

Foreword

SNOBOL4 is a computer programming language containing many features not
commonly found in other programming languages. It evolved from SNOBOL [1,2,3]* a
language for string manipulation, developed at Bell Telephone Laboratories, Incorporated,
in 1962. Extensions to SNOBOL through various versions have made it a useful tool in
such areas as compilation techniques, machine simulation, symbolic mathematics, text
preparation, natural language translation, linguistics, and music analysis.

The basic data element of SNOBOL4 is a string of characters, such as this line of
printing. The language has operations for joining and separating strings, for testing their
contents, and for making replacements in them. If a string is a sentence, it can be broken
into phrases or words. If it is a formula, it can be taken apart into components and
reassembled in another format. A string can appear either as a literal or as the value of a
variable. The literal form is indicated by enclosing the string in quotation marks:

'THIS IS A STRING'
The string value may be assigned to a variable:

LINE = 'THIS IS A STRING'

A common operation on a string is examination of its contents for a desired structure of
characters. This structure, known as a pattern, can be as simple as a string or a given
number of characters. A pattern also can be an extremely complicated expression
consisting, for example, of a number of alternatives followed by another set of alternatives,
all of which must begin a given number of characters from the end of the string. The
pattern, as a data type, may also appear either in literal or variable form. The data type
of a variable - string, pattern, or any other in the language - depends on the last value
assigned to it. There are no type declaration statements for variables as in other
programming languages.

SNOBOL4 provides numerical capabilities with both integers and real numbers. Because
the language is essentially character oriented, and since most numerical operations involve
character counting, integers are more commonly used. Conversion among integers, real
numbers, and strings representing integers or real numbers is performed automatically as
required. The programmer may, in addition, define other data types, such as complex
numbers, and provide operations for them.

Often it is desirable to associate a group of items with one variable name through
numerical indexing or some other identifying property. The SNOBOL4 array and table
provide these capabilities with more flexibility than most programming languages. An

* Numbers in brackets refer to references listed at the end of this manual.

iv Foreword

array is a data element consisting of a set of pointers to other data elements, so that each
array element may be any data type, even an array. An element of an array is referenced
by using an integer index. A table is similar to an array, except that the reference value
need not be an integer, but can be any of several other types. Conversion can be made
between tables and arrays.

Execution of SNOBOL4 programs is interpretive. Instead of compiling a program into
actual computer instructions, the compiler translates the program into a notation the
interpreter can easily execute. This makes it fairly simple to provide capabilities such as
tracing of new values for variables, an operation that is quite difficult in noninterpretive
systems. Another important product of interpretation is flexibility. Functions can be
defined and redefined during program execution. Function calls can be made recursively
with no special program notation. The language is extendable to new data types needed
for a program through data type definition operations. Linked-list nodes and complex
numbers are possible programmer-defined data types. Operations on these new data types
can be defined as functions.

This book is an instructional and reference guide, and provides many examples of usage
of the language. The description of the language is complete and does not require
familiarity with earlier versions of the language. Some familiarity with elementary concepts
of programming is presumed, however.

M. D. Shapiro
Lafayette, Indiana
May, 1970

Preface

The SNOBOL4 programming language has been developed over a period of years and
new language features have been added from time to time during the course of this
development. Consequently there are several somewhat different versions of the language in
use. The first edition of this book, published in May, 1969, described Version 2. The
description in this second edition corresponds to Version 3, released in December, 1969.
Version 3 contains a number of features not available in Version 2.

SNOBOL4 has been implemented on several different computers, including the IBM
System/360, UNIVAC 1108, GE 635, CDC 3600, CDC 6000 series, PDP-10, Sigma 5/6/7,
Atlas 2, and RCA Spectra 70 series. Implementations for other machines are in various
stages of completion. These machines have different operating environments and character
sets. As a result, implementations of SNOBOL4 vary from machine to machine in details
of syntax, operating system interface, and so forth. This book corresponds to the
implementation of SNOBOL4 developed at Bell Telephone Laboratories, Incorporated on
the IBM System/360 operating under OS. Sections of the manual containing language
features particularly dependent upon this implementation make specific reference to this
dependency. Program examples in this book were run on an IBM 360 Model 65.

Acknowledgement

The authors’ most pleasant responsibility is the acknowledgement of the assistance

provided in the course of the design, implementation, and documentation of the
SNOBOL4 language.

The ideas of many individuals have helped shape the form of SNOBOL4. Particularly
valuable contributions have been made by Messrs. R. B. K. Dewar, B. N. Dickman, D. J.
Farber, P. D. Jensen, M. D. Mcllroy, R. F. Rosin, M. A. Seelye, and M. D. Shapiro.

The authors have been fortunate in having the assistance of a number of people during
various stages of the implementation of SNOBOL4. Mr. R. A. Yates designed and
implemented the storage allocation and regeneration techniques used in SNOBOL4. Mr.
Yates also contributed many useful ideas to the overall design of the system. Messrs. B. N.
Dickman and P. D. Jensen designed and implemented the tracing facilities and provided
many helpful suggestions for improving the system. Mr. H. J. Strauss designed and
implemented the external function interface. Mr. L. C. Varian’s assistance in preparing
the initial implementation for the IBM System/360 was particularly valuable.

Mr. J. F. Gimpel has made an important contribution to the organization and
presentation of descriptive material in this book. Several of the programs used in the
examples are his.

The authors’ special thanks go to Mrs. M. T. Hammer and Mrs. L. W. Noll for their
help in editing and proofreading the second edition of this book. The authors also would
like to express their appreciation to Mrs. R. E. Griswold who has given freely of her time
to prepare much of the machine-readable material used in the development of the
SNOBOIL4 language and its documentation.

This revised edition was phototypeset by Alphanumeric Incorporated using their
TEXTRAN*-2 system. The book was designed by Mrs. M. T. Hammer and Mrs. L. W.
Noll. Software developed by Mrs. Noll was instrumental in preparing the book in its
present form.

* Servicemark of Alphanumeric Incorporated

vi

Contents

Chapter 1 - Introduction to the SNOBOL4 Programming Language

1.1 AsSignment STatemMENTSccocviiiiiiieiiiiiniiicieiiiet ettt ettt sttt sttt es 1
L2 AFTRIMETIC ..ottt sttt ettt enes 2
L2.1 INEEEETS ..ottt ettt 2
1.22 Real NUMDEIS.......cooiiiiiiiiiiie et 3
L3 SHIINES .ottt ettt 3
1.3.1 The Null String ..ot 4
1.3.2 Strings in Arithmetic EXpressions.............ccccooiiiiiniininiiniininiincnecenesees 4
1.3.3 String-Valued EXPressionscccooiiiiiiiiiiiiiinininescsr e 4
1.3.4 Input and Output of Stringsccocomiiiiiiiiiiirceeeee s 5
1.4 Pattern Matching Statements..........cccociiiiiiiiiiiiiiiiiiee ettt neen 6
1.5 Replacement StatemMeEnts.........ccccooiiiiiiiiiiiiiiiiieieieiesiet ettt st sa et nes 7
L6 PatterDS.....cc.coiiiiiiiiiiiicc ettt ettt sttt ettt 8
1.7 Conditional Value ASSIGNMENTcccooiiniiiiiiiiiiiiiiic e 9
1.8 Flow of COontrol.........c.ccoiiiiiiiiiiiiiii ettt 10
1.9 Indirect RefErenceooooiiiiiiiiiiiiiiiiiice e 11
LLI0 FUNCHONS ..ottt b ettt et es bttt et ess bt sae b ens 12
1.10.1 Primitive FUNCHONS.........cocooiiiiiiiiiiiiiictceecetee e 12
L10.2 PrediCates ..ot 13
1.10.3 Defined FUunctionscccoccoviiiniiiiiiniiiieieiecsceeee et 14
LLI1 KEYWOIS...c..ciiiiiiiiiiieceeee ettt ettt bbb st b e b bt ettt e b nesneebeebeennens 17
Li12 ATTAYS oottt h e st b et et nh e s b e s a e e b srnesae s 18
LI Tables oo 19
1.14 Programmer-Defined Data TyPes..........cccocviniiiiiiiiiiniiiiiiiiicceeccesc e 19
1.15 Program FOrmatcccocoiiiiiiiiiiiiiiiictc e et e 20
1.16 Program Example...........cccocoiiiiiiiiiiiiiiiiii e 20
117 CONCIUSION. ..ottt et e sa et n e 21
EXEICISES ...ttt ae 22

Chapter 2 - Pattern Matching

2.1
2.2
2.3
2.4

2.5

INErOAUCTIONooiiiiiiiiiccecc e et e et e et e e et a e e ar e e e e aaeeeaseeestseeessseeeennees 24
Alternation and CoOnCAtENALION...............cceiiiiiiiiiiiiieiie et eeee e e e eeae e e earaeeeaaeeaaas 25
SCANIUNG ...ttt bbbt b et ettt b et b e saeee et eb s se e s e s 26
Modes Of SCANNMINEGcooiiiiiiiiiiiie et 29

24.1 Unanchored Mode..........ccooooiiiiiiiii i 30

2.4.2 Anchored MOodE.........ccoooiiiiiiiiiii et 31
Value Assignment through Pattern Matching ..., 32

viii Contents
2.5.1 Conditional Value ASSIgNMeNt.........c..cccoueiiiiiiiiiiinieiniieieineeeecee e 32
25.2 Immediate Value ASSIGNMENTc.coiviiiiiiiriiiinieninene ettt 33
2.5.3 Precedence..........cccooiiiiiiiiiii s 34
254 Association with the Variable OUTPUTccccccociiiiiiiiiininininicciicc, 34
2.5.5 Value Assignment in Replacement Statements.................ccccviniiiiniiinn 35
2.5.6 Association of Several Variables with One Pattern........c..cccoeovinininennn. 35
2.6 The Null String in Pattern Matching ..., 35
2.7 CUISOr POSITIONc.ooiiiiiiiiiiiiiiicic ettt 36
2.8 LEN .ot b b et h bbbt s a e b s eas 37
2.9 SPAN anNd BREAKcccoiiiiiiiiieiiiecitteiteeite et e siteeniteesteeatae e tbe e saessseasbaessseeseensseentaesntaessneene 38
2.10 ANY and NOTANYoiiiiiiiiiiieiieetceeteesteenteesteestbe e tte e ssaessbaessaessseessaesnbeesssessbeenssaenseesaseena 40
2.11 TAB, RTAB, anNd REMccooiiiiiiiiiiiiiiieiie et eiee e e s beesbe e taeesbaessaeesbbesabeesasaenseasnseenns 41
2.12 POS aNd RPOSoooiiiiiiiiiieiiiieeite et teete ettt e steesiteesbeeestee e taeessseenseenseaasbaessseeseeasbeenseaenbeesnseenen 44
213 FAIL oottt b e e h bttt h et b ettt bttt ettt bt etee 47
2.14 FENCEooiiiiiiiiit ettt e e ettt e e s bt e e e aa e e e e saas e s bt e e ea bt ee e b bt ee e e bt eeanbe e e hte e e ettt e e abte ettt e e eabaeeebteens 49
2,15 ABORT ..ottt h ettt h b st h bt bbbt ae bt bt b et et b e b n et 49
2.16 Unevaluated EXPressions............ccccoooiiiiiiiiiiiiiniiiiiiii i 50
2.16.1 Example ... 52
2.16.2 EXamPle 2.t e 52
2.16.3 Example 3. 53
2.16.4 ExXaMPIE 4. s 54
2.16.5 EXamPIe 5...cccooiiiiiiiiiiiiii s 55
217 ARB ... bbb e r et h bbb 56
2,18 ARBNOooiiiiiiiiiiiiettee ettt ettt e bt e e ab bt e e bt e e e e bb et e e b et e ahbe e e eab e e e et e e e bbe e e ebneesneteeas 58
219 BAL ..ottt h e eh et bt et h e a e b et 60
2,20 SUCCEEDooiiiiiiiiiiieiiee ettt e e sttteeesttaeseatee e e taeeasaseeabbeeeaabbeeeasbbeeebbeesabaeeeabbeesbeeeebbeeeeabeesntnee e 61
2.21 QuicksSCan Mode.........ccooouiuiiiiiiiiiiiiic s 62
2.22 Fullscan Modecccoiiiiiiiiiiiiiiiiee s 72
2.22.1 EXAIMPIE....ooiiiiiiiiiiiiicie e 73
EXEICUSES ... s 74

Chapter 3 - Primitive Functions, Predicates, and Operations

3.1
3.2

33

34

INErOAUCTION ...ttt et e e et e et e e et e e e etaeeeareeeeaseeeaabaeeenans 76
NUMETICAl PredICAtes.......coooviiiiiiiiiiiiie ettt et e e eeaeeeeanas 77
32.1 LT, LE, EQ, NE, GE, and GTocioeieoeeeeeeeeeeeeeeeeeeeeeeeseeeeeeesnessessesnesss s ssesnens 77
3,22 INTEGERocoiiiiiitiieeieecte ettt ettt e et ta et e tae s bt e bt e st e s s eabeenbeeteenbesaeeaneenbeenseenne 78
Object Comparison Predicates...............ccoeiiiiiiiiiiiiiiiiiii s 79
3.3.1 IDENT and DIFFERccccccooooiiiiiiiiiiieieeteeieenueeseeseeestesiaesseensesseenseensesseesseenne 79
33,2 LG oottt ettt et e et e et e e bttt e eraeaaeeeraeans 80
Additional Primitive FUNCHONSocoiiiiiiiiiiiiiiiieie ettt e e errae e 81
B4l BIZE .ottt te ettt et ae et eateereenreenes 81
34.2 RE P L ACE ... ittt ettt ettt te et e ettt e et st e et e et sate st esaestnatnsesnaanessnassneanns 81
B4.3 TRIM ..ottt ettt ettt et ettt e et eeabeereeaeeans 82

344 DUPL o e s s 82

Contents ix

3140 REMDRoiiiiiiiiiiiiieiie ettt ettt ettt e et eaeeaae st e be e beetaenbeesbeeseenbeebaans 82
34.6 DATE and TIME ..ottt ebe e 83
34T EVAL ..ottt h st b et n et s e b st etas 83
3148 APPLY ..ottt ettt r e 84
3.5 Negation (=) and Interrogation (2) ..o 84
3.6 External FUNCHONScccccoiiiiiiiiiiicce et 85
3.6.1 Loading and Calling External Functionsccocoonininnninnincnnnenn. 85
3.6.2 Unloading FuncCtionscccocciiiiiiiiiininiiinecctecsee e 87
3.7 OPSYN and Operator Definitionccocoiiiiiiiniiiiiiniciicieceeee e 87
3.7.1 Function SYNONYIMS.........cccooiiirimiiniiiniiieieeteeeteetet ettt seesene e 87
3.7.2 OPErator SYNMONYINScccceirieririeieiriesieietatereeeneeseteseseessesessesestesesessesesesensesens 87
3.7.3 Summary Of OPEratorsccccoeeiiiiiiirieiriei ettt ebenea 88
EXETCUSES ...ttt bbb n bbb 90

4.1 INtrOdUCHIONc.iiiiiiiiiiiiiic bbbt 92
4.2 The Primitive Function DEFINEcccooviiiiiiniiiiiieieiniieneieete e ses v nenens 92
4.3 Procedures for Programmer-Defined Functions............ccccooniiinininiiniinincninenen, 93
4.3.1 RETURN ..ottt ettt 94
4.3.2 FRETURN ..ottt ettt ettt sbe et e set e b e besae e beeatesseennaenneens 94
4.3.3 NRETURN ...ttt ettt ettt sttt e b bt et e saeesb e e be s e e st satesseennesnneens 95
44 Execution of Programmer-Defined Functions............cccccooiniiine, 95
44.1 Example - Union, Intersection, and Negation...........cccooovevrvininiinncnncnne. 96
4.5 Redefinition of Programmer-Defined Functions.........c..coccoconiiniininiininniiiinn, 97
4.6 Recursive Functions..............ccoccoiviiiiiiiiiiiic s 98
4.6.1 Example - Decimal to Binary Conversion ... 99
46.2 Example - Polish to Infix Translation.........ccoccoviiiniinniinnicnenenn. 102
463 Example - Infix to Polish Translation.........ccccooiviiniiiininnninnn. 104
464 Example - Tower of Hanoi.........ccoovininennnncnnn. ettt 109
EXETCUSES ...t 112

Chapter 5 - Arrays, Tables, and Defined Data Types

5.1 ATTAYS oottt h e bbbt ettt e e b b e bt bbb e bt en e ennes 113
5.1.L1 Array Referencesccociiiiiiiiiiiiiiiiiescce et 115
5.2 TABIES ..ot st bbb 118
5.3 Functions for Use with Arrays and Tables.........c.cccoconiniiniinnniniiccce 119
5.3.1 COPY .ottt bbbt bbbt b et aenen 119
5.3.2 PROTOTYPEooiiiiiiiiiiiiieciiee ettt e ettt e eieeeasstea e s tbaeesssaeeessaeessnseeseseessseasnsseessseesnnee 120
5.3.3 ITEM Lot 121
5.3.4 Conversion between Arrays and Tables.........c..coccoviiiiiiniiniiniiiinicncne 122
54 Programmer-Defined Data TYPes........cccooiiriiiiininiiiiiieneteccteesescve e 123
5.1 VALUE ..ottt ettt e s tee e st a e e ba e e e sbaeesabaeeasbee e abeeanseeeenbaeenabaeeenns 126

EEXCTCISES ... e et e et e e et e e er———esa ettt eraattesae bt eesenaraes 127

X Contents

Chapter 6 - Keywords, Names, and Code

6.1 KEYWOIMS. ..ottt sttt sa e e 128
6.1.1 Protected KeyWOrds............cccoceeuiiiieiiiiieiiiiieieiciceeeeeesss e ssas s 128
6.1.2 Unprotected KeyWords..........ccociriiiriiiiiniiiiieeicreseseicse ettt 129
6.2 INAINIES ...ttt sttt h et h e h e bbbt bt ettt et e s bt sbe b ene s 130
6.2.1 Passing NAIMESccoooviiuiiieiiieicsie ittt 132
6.2.2 The Unary Name OPEratorccccoirioieiririeinieiirenieeeteeseesaseessenseessenees 132
6.2.3 Returning a Variable..........ccccociiiiiiiiiiiiiieee e 134
6.3 Gotos, Labels, and Codec...cccoiviiiiiiiiiiiiiiceceeeee ettt 134
6.3.1 Creation and Execution of Code............cccoooviirininnininiiieieireereieeeiees 135
EXOTCUSES ...ttt bttt b ettt 138

Chapter 7 - Types of Data

7.1 Data Type Representations...........c.cococoiiciiiiioineinieiinieieieeereeneereessesesseesssseessesessssesees 139
7.2 Explicit Conversion of Data TyPes..........ccocviriiiiininininiiinicseseseeeee e 140
T. 2.1 CONVERT ..ottt ettt ettt ettt ettt e e tae e st e sseessbasseesbasseassaessaestensaensesssasseensesnne 140
7.3 Data Types of Functions and OPperations.............cccccvceririerinineenineneiencseneeieenennns 142
7.3.1 Primitive FUnCHONS........cccooiiiiiiiiiiciccccceecee e 143
7.3.2 UNAry OPEIatorscccccoeiiiiirieiiiiienieieitntintesteteteet et eiesse st tesese st eresaesnessens 144
7.3.3 BINary OPEIatorS.........c.ccociiiiiriiriiiiienieieiteiintententesteststeseeste e ssesessese s esessessensene 145
7.3.4 Statement COMPONENTS..........ccccoviruiirieririeiiiiiiiieteeete et 146
74 Implicit Conversion of Data Types ..o 147
7.4.1 Conversion 10 STRINGc.cccoceoimiiiriiriieiinieiinieinteee st esss e ssessnes 147
74.2 Conversion t0 PATTERNccccccviirinieieiniinienieniesteteseeneeseeressestesesseeeseesessessnns 148
743 Conversion to INTEGERcccceciiiiieiiniiinieiintcteieenisieesiesssaessssssessssesessssessnnes 148
744 Conversion tO REALc.ccccooiiirinieuiriiiiinreeeieneeesesietes s ssssesssesess s s saeneas 148

Chapter 8 - Tracing

8.1 Standard Trace Procedures..............ccccoiiiiiiiiiiiiiiiiiiii 149
8.1.1 Value Tracing.......cccccceiiiniiniiiiiiiiiiiiiiiciciei e 150
8.1.2 Function Tracingccccccoviiiiniiininiiiiiiiiice i 153
8.1.3 Label Tracing.......cccoeiimiiiiiiiiiiiiiciieiceteeeee et 157
8.14 Keyword Tracing........cccooimiiiiiiiiiiiiiiiisieiccit ettt 158
8.1.5 Discontinuation of Tracing........c.cccccoviviiiiiiiiiiiiiiiiiiiiiiiiee 159
8.2 Programmer-Defined Trace Functions ..o, 160
8.2.1 Invoking Programmer-Defined Trace Procedures..............cccoeviniinnnnnnnns 160
82.2 Tools for Writing Programmer-Defined Trace Procedures......................... 160
8.3 Other Tracing TechniquUes..........c.ccccoiiiiiiiniiiiiiiiicee e 162
84 Dumping Natural Variables ... 163

EXCICUSES ettt et e et e e aaeaaeeeaaaeeeeee e et e e e e e et e e et e e t e et e assasannnasasensssrsnnassssasasssnnnsnssasnnnnnns 163

Contents xi

Chapter 9 - Input and Output

9.1
9.2
9.3
9.4
9.5
9.6
9.7

9.8

Printed OULPULcooiiiiii ettt 164
Punched OutPut ..ottt 165
INPUL ettt 165
The 170 SYStemM ..ottt 166
Output ASSOCIATIONScuouiiiiiiiiiiiieiciiii ettt ettt ettt ettt 167
INPUt ASSOCIATIONSc.ouiiiiiiiiiiiiiiiiiie ettt ettt ettt 169
Other 170 FUNCHONS........c.ciiiiiiiiiiicicir ettt 169
9.7.1 BACKSPACE ..ottt ettt ettt b ettt aeesa et s ettt et saeens 170
9.7.2 DETACH ..ottt ettt ettt e ettt et et e et e te b et st at et et e aeeaeens 170
9.7.3 ENDFILEcooiiiiiiiiiieiieeeiet ettt ettt et e ae et e et e teeteeteeteeseesb et esseasensessebeseeens 170
9.7.4 REWINDooiiiiiiieie ettt ettt ettt ettt et e e e bt etseteeteeseesseatessessesesasesseaseasenns 170
Turning Off Input and OUtPUL.........ccoeiiiiiiiiiii e 171

Chapter 10 - Running a SNOBOL4 Program

10.1

10.2

10.3

COMPIIATION ...ttt ettt 172
10.1.1 Source-Program INPut.........c.ccccociiiiiiiiiiiiiiiiiicieeece e 172
10.1.2 Source LiStIMg......ccooiiiiiiiiiiiiiiiieeie ettt 173
10.1.3 Listing COntrolccccoooiiiiiiiiiiiiiiieieinc ettt 173
10.1.4 Operator Precedence and AsSOCIAtiVItYcccocoveoimiicinieeneeiiniiciecineeens 174
10.1.5 Errors Detected during Compilationccccoceveoiniciniiiniininnciccnecee 175
10.1.6 Compilation Error MeSSages.........c.ccocoiiviriiiiiiiiiinieineieieceieeeieseieee e 175

EXECULION. ...ttt sttt 176
10.2.1 The Sequence of Evaluationccccocoiiiiiiiinininiiieeceeee e 177
10.2.2 Error ConditiOnscccccoiiiiiiiniiiniiicieinie ettt 179
10.2.3 Program Error MEessagesc.cccccviiiiiiiiiinininiiiiicincecseeceeeeec e 180

TErmMINAtIONo.iiiiiiiiiiiiicicc ettt et 183
10.3.1 Normal Termination............ccccocviiiiiiiiiiiiiniiniiieceneeese e 183
10.3.2 Error Terminationcccoccoiiiiiiiiiiiiiinieinieene ettt eaenens 187
10.3.3 Cancellation Terminationcccocviiiiieiniiiineineinncer et eneees 190

Chapter 11 - Programming Details and Storage Management

11.1
11.2
11.3
11.4
11.5
11.6

Implementation OVEIVIEWcccciiiiiiniiiiiiiiiiieee et e 191
SELIIES ...ttt b ettt e r et 192
Other Variables ... 193
Patterns and Pattern Matching...............cocoiiiiii, 193
Input and OUtPUL......ccoociiiiiiiiii e 195
Storage ManagemENtoccuiiiiiiiiiiiiiiet ettt sttt 195

11.6.1 Forcing Storage Regenerationccccoveviieiinincieneicninciincceeeeenens 195

11.6.2 Clearing Variable Values...........cccocccniiininiinniininccccceseceee 196

xii Contents

Appendix A - Syntax of SNOBOL4..............cccoiiiiiiiiicec s 197
Al Syntax of StatemMENts.........cccooiiiiiiiiiiiitiiiiiiee ettt sttt 198
A2 Syntax of Programs ... 199
A3 Syntax Of ProtOtyPes.........ccooviiiiiiiiiiiiiiiiiiirc ettt 200
A4 Syntax of Data Type CONVEISIONScccoccoriiiiririiiiniieiieiiesieieieie ettt seeeeeeeeens 201
A5 Character Codes for Various Machinesccccovieiiiniiiiiicininnccicninecciees 201
A.6 Extended Syntax for the IBM 360 Implementation..........c.cccoccoeviminciincnieencnenencns 202
Appendix B - Versions 2 and 3 of SNOBOL4 ... 204
B.1 Running Version 2 Programs under Version 3. 204
B.2 Running Version 3 Programs under Version 2............cccoccoviiininnnniinncnniccnnen. 205
Appendix C - Sample Programs...........c..c.ccooiiiiiiiiiniiiiincneiceee st 206
Appendix D - Solutions to EXercises............cccoccoviiriniiininiiiiniiiiiiincceeeeeeee e 235
REFErences..........cc.coiiiiiii 248

CHAPTER 1

Introduction to the SNOBOL4 Programming Language

This chapter is an introductory overview of the SNOBOL4 programming language. It
describes the format of statements, some of the operations, and some of the types of data
handled by the language. Later chapters describe in more detail much of the material in
this introductory chapter.

A SNOBOL4 program consists of a sequence of statements. There are four basic types
of statements:

(1) the assignment statement,

(2) the pattern matching statement,
(3) the replacement statement, and
(4) the end statement.

The end statement terminates the program.

1.1 Assignment Statements

The simplest type of statement is the assignment statement. It has the form

variable = value

The assignment statement may be said to have the following meaning: ‘Let wvariable have
the given value.’ For example, let V have the value 5, or

A = 5

The value may be given by an expression, consisting, for example, of arithmetic operations
as in the statement

W = 14 + (16 - 10)

which assigns the value 20 to the variable W. Blanks are required around arithmetic
operators such as + and —. The value need not be an integer, which is just one type of
data handled by SNOBOL4. For example, the value may be a string of characters,
indicated by enclosing quotes. An example is the assignment statement

v = 'DOG’

2 Introduction to the SNOBOL4 Programming Language 1.2.1

which assigns the string DOG to the variable V. Various types of data and operations that
may be performed on them are described later.

Typically a variable is a name such as V, X, or ANS. Variables appearing explicitly in a
program must begin with a letter which may be followed by any number of letters, digits,
periods, and underscores.

The value of a variable may be used in an assignment statement. Thus
RESULT = ANS. 1

assigns to the variable RESULT the value of ANS. 1. (Quotation marks distinguish literal
strings from variables.)

Blanks are required to separate the parts of a statement. In an assignment statement, the
equal sign must be separated from the variable on the left and the value on the right by
at least one blank.

1.2 Arithmetic
1.2.1 Integers

The arithmetic operations of addition, subtraction, multiplication, division, and
exponentiation of integers may be used in expressions. The statements

M = y
N = 5
P = N *M/ (N - 1)

assign the value 5 to P. While blanks are required between the binary operators and their
operands, unary operators such as the minus sign must be adjacent to their operands. An
example is the statement

Q2 = ~-p/ -N
which assigns the value 1 to Q2.

Arithmetic expressions can be arbitrarily complex. When evaluating arithmetic
expressions, the natural order of operator precedence applies. The unary operations are
performed first, then exponentiation (¥* or !), then multiplication, followed by division,
and finally addition and subtraction. All arithmetic operations associate to the left except
exponentiation. Hence,

X = 2 %% 3 *% 2
is equivalent to

X = 2 *x (3 **x 2)

1.3.1 The Null String 3

Parentheses may be used to emphasize or alter the order of evaluation of an expression.

In the above examples all the operands are integers and the results are integers. The
quotient of two integers is also an integer. The remainder is discarded. Thus

Q1 5/ 2
Q2 = 5/ -2

give Q1 and Q2 the values 2 and -2, respectively.

1.2.2 Real Numbers

Real operands are also permitted in arithmetic expressions. The statements

PI = 3.14159
CIRCUM = 2. ¥ PI * 5,

assign real values to PI and CIRCUM.

If real numbers are mixed with integers in arithmetic expressions, the result is a real
number. For example, the value of

SUM = 16.4 + 2
is18.4.

1.3 Strings

Expressions involving operands that are character strings are also permitted in
assignment statements. For example, the assignment statement

SCREAM = '"HELP'
assigns the string HELP as the value of SCREAM.

The string is specified by enclosing it within a pair of quotation marks. Any character
may appear in a string. A pair of double quotation marks can be used instead of single
quotation marks. This permits the use of quotation marks within a string as in the
statements

PLEA = 'HE SHOUTED, "HELP."'
QUOTE = R
APOSTROPHE = nen

Single quotation marks are used in the examples given in this book where one type of
quotation mark is sufficient.

4 Introduction to the SNOBOL4 Programming Language 1.3.3

1.3.1 The Null String

The null string, which is a string of length zero, is frequently used in SNOBOL4. With
a few exceptions, explained later, all variables have the null string as their initial value. A
variable can also be assigned the null string by a statement like

NULL =
or, more briefly,

NULL =

The variable NULL is used in many examples that follow to represent the null string. The
null string is different from the following strings, each of which has length one:

|ol

1.3.2 Strings in Arithmetic Expressions

Numeral strings can be used in arithmetic expressions with integers and real numbers.
For example, as a result of the statements

'/ = '10'
X 5 % -2 + '10.6'

X has the value -39.4. Numeral strings representing integers can contain only digits and
an optional preceding sign. Numeral strings representing real numbers must have at least
one digit before the decimal point. Thus, the following strings cannot be used in
arithmetic expressions:

'1,253,465"
'.364 E-03'

The null string is equivalent to the integer zero in arithmetic expressions.

1.3.3 String-Valued Expressions

Concatenation is the basic operation for combining two strings to form a third. The
following statements illustrate the format of an expression involving concatenation.

TYPE = 'SEMI'
OBJECT = TYPE 'GROUP'

The resulting value of OBJECT is the string SEMIGROUP. Notice there is no explicit
operator for concatenation. Concatenation is indicated by specifying two string-valued
operands separated by at least one blank.

1.3.4 Input and Output of Strings 5

FIRST = 'WINTER'
SECOND = 'SPRING'
TWO.SEASONS = FIRST ',' SECOND

are equivalent to

TWO.SEASONS 'WINTER, SPRING'

Strings can also be concatenated with reals and integers as in

ROW = 'K'
NO. = 22
SEAT = ROW NO.

which gives SEAT the value K22.

In an expression involving concatenation and arithmetic operations, concatenation has
the lowest precedence. Thus

SEAT - ROW NO. + 4 / 2
is equivalent to

SEAT ROW (NO. + (4 / 2))

or

SEAT = 'K24'

1.3.4 Input and Output of Strings

Three variables provide means for reading and writing data. The variables OUTPUT and
PUNCH are for printing and punching. Whenever either of them is assigned a string,
integer or real value, a copy of the value is put out.

OUTPUT = 'THE RESULTS ARE:'

assigns THE RESULTS ARE: to OUTPUT and also prints it.
PUNCH = OUTPUT

causes the same line to be punched on a card. The statements

OUTPUT =
PUNCH =

cause a blank line to be printed and a blank card to be punched.

The variable INPUT is used for reading in strings. Each time the value of INPUT is
required in a statement, another card is read in and the 80-character string on it is
assigned as the value of INPUT. Thus '

PUNCH = INPUT

6 Introduction to the SNOBOL4 Programming Language 1.4

punches a copy of the input card.

Data cards to be read in occur immediately after the end statement that terminates the
program.

1.4 Pattern Matching Statements

The operation of examining strings for the occurrence of specified substrings (i.e. pattern
matching) is fundamental to the SNOBOL4 language. Pattern matching can be specified
in two types of statements:

(1) the pattern matching statment, and
(2) the replacement statement.

The pattern matching statement has the form
subject pattern

where the two fields are separated by at least one blank. The subject specifies a string that
is to be examined, and the pattern can be thought of as specifying a set of strings. The
statement causes the subject string to be scanned from the left for the occurrence of a
string specified by the pattern.

If
TRADE = ' PROGRAMMER'
the statement
TRADE 'GRAM'

examines the value of TRADE for an occurrence of GRAM. If
PART = 'GRAM'

then an equivalent statement is
TRADE PART

The following example illustrates a pattern matching statement in which the pattern is a
string-valued expression.

ROW = 'K'
NO. = 20
'K24' ROW NO. + 4

The subject is a literal and the value of the expression is the string K24.

Notice that there is no explicit pattern matching operator between the subject and the
pattern. The two fields are separated by blanks.

1.5 Replacement Statements 7

If it is necessary to have concatenation in the subject, the expression must be enclosed
within parentheses to avoid ambiguity. An example is

TENS = 2
UNITS = 5
(TENS UNITS) 30

On the other hand, a pattern formed by concatenation does not need parentheses. The

following statements are equivalent:

TENS UNITS 30

TENS (UNITS 30)

1.5 Replacement Statements

A replacement statement has the form
subject pattern = object

where the fields are separated by at least one blank. Pattern matching is performed as in
the pattern matching statement. If the pattern matching operation succeeds, the subject
string is modified by replacing the matched substring by the object. For example, if

WORD = '"GIRD'
then the replacement statement
WORD 'I' = 'ou’

causes the subject string GIRD to be scanned for the string I and then, since the pattern
matches, I is replaced by oU. Hence WORD has as value the string GOURD. If the
statement is

WORD 'AB' = 'ou’
the value of WORD does not change because the pattern fails to match.

Another example of the use of replacement statements is given in the following sequence
of statements

HAND = 'ACUDAHKDKS'
RANK = 4

SUIT = 'D'

HAND RANK SUIT = 'AS'

which replaces the substring 4D with the string AS.

A matched substring is deleted from the subject string if the object in the replacement
statement is the null string. Thus

HAND RANK SUIT =

8 Introduction to the SNOBOL4 Programming Language 1.6

deletes 4D from HAND leaving it with the string ACAHKDKS as value.

1.6 Patterns

The patterns in the preceding examples specify single strings. It is also possible to
specify more complex patterns. There are two operations available for constructing such
patterns:

(1) alternation, and
(2) concatenation.

Alternation is indicated by an expression of the form
P1 | P2

where the two patterns P1 and P2 are separated from the | by blanks. The value of the
expression is a pattern structure that matches any string specified by either P1 or P2. For
example, the statement

KEYWORD = ' COMPUTER' | ' PROGRAM'

assigns to KEYWORD a pattern structure that matches either of these two strings.
Subsequently, KEYWORD may be used wherever patterns are permitted. For example,

KEYWORD = KEYWORD | 'ALGORITHM'

gives KEYWORD a new pattern value equivalent to the value assigned by executing the
statement

KEYWORD = 'COMPUTER' | 'PROGRAM' | 'ALGORITHM'
Using KEYWORD in the pattern field, the statement
TEXT KEYWORD =

examines the value of TEXT from the left and deletes the first occurrence of one of the
alternative strings. If

TEXT = 'PROGRAMMING ALGORITHMS FOR COMPUTERS'
the result of the replacement statement is as if the following statement were executed:
TEXT = '"MING ALGORITHMS FOR COMPUTERS'
Concatenation of two patterns, P1 and P2, is specified in the same way as the
concatenation of two strings:
P1 P2

That is, the two patterns are separated by blanks. The value of the expression is a pattern
that matches a string consisting of two substrings, the first matched by P1, the second
matched by P2. For example, if

1.7 Conditional Value Assignment 9

BASE = "BINARY' | 'DECIMAL' | 'HEX'
SCALE = '"FIXED' | 'FLOAT'
ATTRIBUTE = SCALE BASE
and
DCL = 'AREAFIXEDDECIMAL'

then the pattern match succeeds in the statement

DCL ATTRIBUTE

Concatenation has higher precedence than alternation. Thus
ATTRIBUTE = 'FIXED' I '"FLOAT' 'DECIMAL'

matches FIXED or FLOATDECIMAL. The order of evaluation may be altered by using
parentheses.

ATTRIBUTE = ('"FIXED' | 'FLOAT') 'DECIMAL'
matches either FIXEDDECIMAL or FLOATDECIMAL.

1.7 Conditional Value Assignment

It is possible to associate a variable with a component of a pattern such that if the
pattern matches, the variable is assigned the substring matched by the component. The
operator . is the conditional value-assignment operator and it is used in an expression of
the form

pattern . variable
where the operator is separated from its operands by blanks. For example
BASE = ('HEX' | 'DEC') . B1

assigns to BASE a pattern that matches either HEX or DEC. If BASE is used successfully in
a pattern match, the value of B1 is set to the substring matched by BASE.

The operator . associates to the left, and has higher precedence than concatenation and
alternation.

A.OR.B = A | B . OUTPUT
is equivalent to
A.OR.B = A | (B . ouTpuT)

which assigns to A.OR.B a pattern that matches the value of A or B. If B matches, the
substring matched is printed.

10 Introduction to the SNOBOL4 Programming Language 1.8

There is also an operator $ for immediate value assignment which assigns value to a
variable if the associated component of the pattern matches regardless of whether the
entire pattern matches. Immediate value assignment is discussed in more detail later.

1.8 Flow of Control

A SNOBOL4 program is a sequence of statements terminated by an end statement.
Statements are executed sequentially unless otherwise specified in the program. Labels and
gotos are provided to control the flow of the program.

A statement may begin with an identifying label, permitting transfer to the statement.
For example, the assignment statement

START TEXT = INPUT

has the label START. A label consists of a letter or a digit followed by any number of
other characters up to a blank. Blanks separate the label from the subject. A statement
with no label must begin with at least one blank. The end statement is distinguished by
the label END, indicating the end of the program.

Transfer to a labelled statement is specified in the goto field which may appear at the
end of a statement and is separated from the rest of the statement by a colon. Two types
of transfers can be specified in the goto field: conditional and unconditional.

A conditional transfer consists of a label enclosed within parentheses preceded by an F
or S corresponding to failure or success. An example is the statement

TEXT = INPUT :F(DONE)

This statement causes a record to be read in and assigned as the value of TEXT. If,
however, there is no data in the input file, i.e. an end of file is encountered, no new value
is assigned to TEXT. Then, because of the failure to read, transfer is made to the
statement labelled DONE.

A use of the success goto is illustrated in the following program which punches a copy
of the input file.

LOOP PUNCH INPUT :S(LoOP)

END

The first statement is repeatedly executed until the end of file is encountered. Then the
program flows into the end statement causing the program to terminate.

The success or failure of a pattern match can also be used to control the flow of a
program by conditional gotos. For example

COLOR = 'RED' | 'GREEN' | 'BLUE'
BRIGHT TEXT COLOR = :S(BRIGHT)F (BLAND)
BLAND

1.9 Indirect Reference 11

All occurrences of the strings RED, GREEN, and BLUE are deleted from the value of
TEXT before the pattern fails to match. Control then passes to the statement labelled
BLAND. Both success and failure gotos can be specified in one goto field, and may appear
in either order.

An unconditional transfer is indicated by the absence of an F or S before the enclosing
parentheses. For an example of an unconditional transfer, consider the following program
that punches and lists a deck of cards.

LOOP PUNCH = INPUT :F(END)
OUTPUT = PUNCH : (LOOP)
END

The goto field in the second statement specifies an unconditional transfer.

1.9 Indirect Reference

Indirect referencing is indicated by the unary operator $. For example, if
MONTH = 'APRIL'
then $MONTH is equivalent to APRIL. That is, the statement
$MONTH = 'CRUEL'
is equivalent to

APRIL 'CRUEL'

The indirect reference operator can also be applied to a parenthesized expression as in
the statements

WORD - 'RUN'
$(WORD ':') = $(WORD ':') + 1

which increment the value of RUN: .

In general, the unary operator $ generates a variable that is the value of its operand.
The expression

$('a' | 'B")
is erroneous because the value of the operand of $ is a pattern, not a string. Indirect
reference in a goto is demonstrated by

N = N+ 1 :($('PHASE' N))

If, for example, the assignment statement sets N equal to 5', then the transfer is to the
statement labelled PHASES .

12 Introduction to the SNOBOL4 Programming Language 1.10.1

1.10 Functions

Many SNOBOL4 procedures are invoked by functions built into the system, called
primitive functions. Operations that occur frequently are implemented as primitive
functions for efficiency. Other primitive functions are used to invoke more complex
operations that are fundamental to the language, affect parameters and tables internal to
the system, and perform operations that could not be programmed in source language by
other means. In addition, facilities are available for a programmer to define his own
source-language functions.

1.10.1 Primitive Functions

The primitive function SIZE has a single string argument and returns as value an
integer that is the length (number of characters) of the string. The statements

APE = 'SIMIAN'
OUTPUT = SIZE(APE)

print the number 6.

Arguments to all functions are passed by value, and an arbitrarily complex expression
may be used in the argument. Thus the statements

N = 100
OUTPUT = SIZE('PART' N + 4)

print the number 7, because the value of the argument is the string PART104.
The argument of SIZE is supposed to be a string. Therefore, a call of the form
SIZE('APE' | 'MONKEY')
is erroneous because the value of the argument is a pattern.

DUPL is another function that performs an operation that is frequently required.
DUPL(string,integer) returns as value a string that consists of a number of
duplications of the string argument. The value of

DUPL('/*',5)

is /%/%/%/%/%. DUPL returns the null string if the second argument is zero, and fails
if it is negative. The statement

OUTPUT = DUPL(' ',40 - SIZE(S)) [

prints the string Sright justified to column 40 if its length is not greater than 40.
Otherwise the statement fails, and S is not printed.

REPLACE is a function called with three string-valued arguments.

REPLACE (TEXT,CH1,CH2)

1.10.2 Predicates 13

returns as value a string which is the same as TEXT, except that each occurrence of a
character appearing in CH1 is replaced by the corresponding character in CH2. For
example, the statements

STATEMENT = 'A(1,J) = A(1,J) + 3'
OUTPUT = REPLACE (STATEMENT, '()','<>!")

print the line
A<1,3> = A<I,J> + 3

If the last two arguments of the function call do not have the same length, the function
fails. Function failure, like input failure, can be used in a conditional transfer.

There are also several functions that return patterns as their values. LEN is such a
function. LEN(integer) returns a pattern that matches any string of the length specified
by the integer.

The following example punches a card with the first 40 characters from a card that is
read in.

INPUT LEN(40) . PUNCH

1.10.2 Predicates

A predicate is a function or operation that returns the null string as value if a given
condition is satisfied. Otherwise it fails.

LE is an example of a predicate used for comparing numbers.
LE(N1,N2)

returns the null string as value if N1 is a number less than or equal to N2. N1 and N2
may be either integer or real. Thus

PUNCH = LE(SIZE(TEXT),80) TEXT

punches the string TEXT if its length is not greater than 80. The null string value of the
predicate does not affect the string that is punched. If the predicate fails, no assignment is
made to PUNCH, and no card is punched.

The success or failure of a predicate can be used with a conditional goto to control the
flow of a program. For example,

SUM = 0
N = 0
ADD N = LT(N,50) N + 1 :F(DONE)
SUM = SUM + N : (ADD)
DONE OUTPUT = SUM

sums the first 50 integers. Iteration continues as long as N is less than 50. When the

14 Introduction to the SNOBOL4 Programming Language 1.10.3

predicate fails, the conditional transfer to DONE is performed and the string 1275 is
printed.

There are several predicates for comparing data objects. For example,
DIFFER(ST1,ST2)
returns the null string as value if the values of two arguments are not identical. Thus
OUTPUT = DIFFER(FIRST,SECOND) FIRST SECOND

concatenates the values of FIRST and SECOND if they are not the same, and then prints
them. The predicate IDENT is the converse of DIFFER. IDENT fails if the values of its
arguments are not identical.

For all functions, an omitted argument is assumed to be the null string. Thus
PUNCH = DIFFER(TEXT) TEXT
punches the value of TEXT if it is not the null string.

LGT is a predicate that lexically compares two strings.
LGT(ST1,ST2)

succeeds if ST1 follows (is lexically greater than) ST2 in alphabetical order. The
statements

OUTPUT = LGT(TEXT1,TEXT2) TEXT2 :S(SKIP)

OUTPUT = TEXT1

OUTPUT = TEXT2 : (JUMP)
SKIP OUTPUT = TEXT1

JUMP

print the values of TEXT1 and TEXT2 in alphabetical order.

1.10.3 Defined Functions

The SNOBOL4 language provides the programmer with the capability to define
functions in the source language. This feature facilitates the organization of a program
and may improve its efficiency.

A programmer may define a function by executing the primitive function DEFINE to
specify the function name, formal arguments, local variables, and the entry point of the
function. The entry point is the label of the first of a set of SNOBOL4 statements
constituting the procedure for the function.

The first argument of DEFINE is a prototype describing the form of the function call.
The second argument is the entry point. For example, execution of the statement

DEFINE('DELETE(STRING,CHAR)','D1')

1.10.3 Defined Functions 15

defines a function DELETE having two formal arguments, STRING and CHAR, and entry
point D1. The statements

D1 STRING CHAR = :S(D1)
DELETE = STRING : (RETURN)

form a procedure that deletes all occurrences of CHAR from the value of STRING. The
statement assigning the resulting value to the variable DELETE illustrates the SNOBOL4
convention for returning a function value. The function name may be used as a variable
in the function procedure. Its value on return from the procedure is the value of the
function call. Return from a procedure is accomplished by transfer to the system label
RETURN.

If the second argument is omitted from the call of DEFINE, the entry point to the
procedure is taken to be the same as the function name. For example

DEFINE('DELETE(STRING,CHAR) ')
could have the procedure
DELETE STRING CHAR = :S(DELETE)
DELETE = STRING : (RETURN)
A call of the function is illustrated in the following statements

MAGIC = 'ABRACADABRA'
OUTPUT = DELETE (MAGIC,'A')

which print BRCDBR.

Arguments are passed by value and may be arbitrarily complex expressions. Thus the
statement

TEXT = DELETE(DELETE(INPUT,'.'),' ')
deletes all periods and blanks from the input string.

Functions can also fail under specified conditions. As an example, consider the following
version of DELETE, which fails if STRING does not contain an occurrence of CHAR.

DELETE STRING CHAR = :F(FRETURN)
D2 STRING CHAR = :S(D2)
DELETE = STRING : (RETURN)

The transfer to the system label FRETURN indicates failure of the function call.
Consequently,

PUNCH = DELETE (INPUT, "*"')
punches a card only if the input string contains an *.

Arguments to a function and the value returned can be any type of data object.
Consider, for example, the function MAXNO where MAXNO(P,N) returns a pattern that
matches up to N adjacent strings matched by the pattern P. That is, if

