
2023 REXXLA
International Rexx
Language
Symposium
Proceedings
René Vincent Jansen (ed.)

21 May 2023

THE REXX LANGUAGE ASSOCIATION
REXXLA Symposium Proceedings Series
ISSN 1534-8954

Publication Data
©Copyright The Rexx Language Association, 2023
All original material in this publication is published under the Creative Commons - Share Alike
3.0 License as stated at https://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode.

A publication of RexxLA Press

The responsible publisher of this edition is identified as IBizz IT Services and Consultancy,
Amsteldijk 14, 1074HRAmsterdam, a registered company governed by the laws of theKingdom
of The Netherlands.

The RexxLA Symposium Series is registered under ISSN 1534-8954
The 2023 edition is registered under ISBN 978-94-036-5010-4

9 771534 895004

ISSN 1534-8954

9 789403 650104

ISBN 978-94-036-5010-4

2023-05-20 First printing

I

Introduction

History of the International REXX Language Symposium
In 1990, Cathie Dager of SLAC1 convened the organizing committee for the first independent
REXX2 Symposium for Developers and Users. SLAC continued to organize this annual event
until the middle of the 1990’s when the REXXLA took over that responsibility. Symposia have
been held annually since 1990.

About RexxLA
During the 1993 Symposium in La Jolla, California, plans for a REXX User Group materialized.
The REXX Language Association (REXXLA), as it was called, is an independent, non-profit
organization dedicated to promoting the use and understanding of the REXX programming
language. REXXLA manages several open source implementations of REXX.

The selection procedure
Presentation proposals are solicited yearly using a CFP3 procedure, after which the RexxLA
symposiumcomittee reviews themandvoteswhichpresentations are selected for the symposium.
The presentations are peer reviewed before being presented. Presenters are not compensated
for their presentations.

Location
The 2023 symposium was held Amsterdam, and Online from 14 May 2023 to 17 May 2023.

Organizing Committee
. Chip Davis. Jon Wolfers. Mark Hessling. René Jansen. Terry Fuller

1Stanford Linear Accelerator Center, since 2008 SLAC National Accelerator Laboratory
2Cowlishaw, M. F., The REXX Language (second edition), ISBN 0-13-780651-5, Prentice-Hall, 1990.
3Call For Papers.

II

Contents

1 Tutorial: From Rexx to ooRexx – Rony G. Flatscher 1

2 Tutorial: Stems a Different Way - Introducing ’oo’ in ooRexx – Rony G. Flatscher 17

3 An introduction to programming the Raspberry Pi with ooRexx and BSF4ooRexx – Marcel
Dür 34

4 NetRexx 4.05 Update – René Vincent Jansen 52

5 Rexx from a Cognitive Load Perspective – Till Winkler 64

6 REXX for full stack development – Larry Schacher 72

7 Using Flutter and HTML5 to build Rexx applications – Michael Beer 84

8 Rexx and PL/I: Similarities and Differences – Shmuel Metz 101

9 CREXX Progress Update – Adrian Sutherland 123

10 Running a Rexx Tech Stack Workstation on a Zero Series Pi SBC – Tony Dycks 134

11 Implementing Rexx Solutions on the Libre Computer ’Le Potato’ SBC – Tony Dycks 152

12 Portable versions of ooRexx – Rony G. Flatscher 171

13 ooRexx for fun – Walter Pachl 178

14 Rexx Search Order – Josep Maria Blasco 191

15 NetRexx and BSF4ooRexx Java Threading Issues – René Vincent Jansen 267

16 Proposing ooRexx and BSF4ooRexx for Teaching Programming and Fundamental
Programming Concepts – Rony G. Flatscher 276

17 The IntelliJ IDEA Plugin ooRexxPlugin 2.2 for Rexx and ooRexx 5.0 – Rony G. Flatscher
304

18 Building a native executable with CREXX – René Vincent Jansen 319

19 The Bookmaster to Latex conversion tool – Michael Beer 330
III

1

Tutorial: From Rexx to ooRexx – Rony G.
Flatscher

Date and Time

14 May 2023, 13:15:00 UTC

Presenter

Rony G. Flatscher

Presenter Details

Ronyworks as a professor for Business informatics (”Wirtschaftsinformatik”) at
the Vienna University of Economics and Business Administration (Wirtschafts-
universitätWien) andusesOpenObject REXX for teachingBusinessAdministration
and MIS students the object-oriented paradigm, as well as remote-controlling
(automating) Windows and Windows end-user applications (e.g. MS Office,
OpenOffice) aswell as Java and Java applications (he is the author of BSF4ooREXX,
the ooREXX-Java bridge,whichusesApacheBSF andhadRony invited to become
an ASF member). He consults and trains in all of his research fields.

1

"From Rexx to ooRexx"

The 2023 International Rexx Symposium

Almere, The Netherlands

May 14th – May 17th 2023

© 2023 Rony G. Flatscher (Rony.Flatscher@wu.ac.at)

Wirtschaftsuniversität Wien, Austria (http://www.wu.ac.at)

 2

Agenda

• Brief History

• Getting Object Rexx

• Some new features like

– USE ARG

• New: Directives

– ::ROUTINE, ::REQUIRES

– ::CLASS, ::ATTRIBUTE, ::METHOD

– (::ANNOTATE, ::CONSTANT, ::OPTIONS, ::RESOURCE)

• Roundup 2

 3

Brief History, 1

• Begin of the 90s

– OO-version of Rexx (Object REXX) presented to the

IBM user group "SHARE"

– Developed since the beginning of the 90s

• Originally conceived by a team led by Simon Nash

• Rewritten product under the lead of Rick McGuire

– 1997 Introduced with OS/2 Warp 4

• Support of SOM and WPS

– 1998 Free Linux version, trial version for AIX

– 1998 Windows 95 and Windows/NT

 4

Brief History, 2

• RexxLA and IBM negotiate

– 2004 IBM handed over source code to RexxLA

– "Open Object Rexx (ooRexx) 3.0"

• Open source version of IBM's Object REXX

• Released by RexxLA: 2005-03-25

– ooRexx 3.1 (2006), ooRexx 3.2 (2008)

– ooRexx 4.0 (2009)

• New kernel, 32- and 64-bit became possible

– ooRexx 4.1 (2011), ooRexx 4.2 (2014)

– ooRexx 5.0 (2022)
3

 5

Some New Features

• Compatible with classic Rexx, TRL 2

– New sequence of execution of Rexx programs:

(Load) Phase 1: Full syntax check of the Rexx program upfront

(Setup) Phase 2: Interpreter carries out all directives (lead in with "::")

(Execution) Phase 3: Start of program execution with line # 1

• rexxc[.exe]: compiles Rexx programs

– If same bitness and same endianness, on all platforms

• USE ARG in addition to PARSE ARG

– among other things allows for retrieving stems by reference (!)

• Line comments, led in by two dashes ("--")

-- comment until the line ends

 6

Stem, Classic REXX

"stemclassic.rex"
s.1="Entry # 1"

s.2="Entry # 2"

s.0=2 /* total number of entries in stem */

call add2stem /* add to stem using an (internal) routine */

do i=1 to s.0 /* iterate over all stem array entries */

 say "#" i":" s.i

end

exit

add2stem: procedure expose s. -- allow access to stem

 n=s.0+1 /* add after last current entry */

 s.n="Entry #" n "added in add2stem()"

 s.0=n /* update total number of entries in stem */

 return

/* yields:

 # 1: Entry # 1

 # 2: Entry # 2

 # 3: Entry # 3 added in add2stem()

*/

4

 7

Stem, REXX with USE ARG

"stemusearg.rex": No EXPOSE
s.1="Entry # 1"

s.2="Entry # 2"

s.0=2 /* total number of entries in stem */

call add2stem s. /* supply stem as an argument! */

do i=1 to s.0 /* iterate over all stem array entries */

 say "#" i":" s.i

end

exit

add2stem: procedure /* no "expose s." needed anymore ! */

 use arg s. /* USE ARG allows to directly refer to the stem */

 n=s.0+1 /* add after last current entry */

 s.n="Entry #" n "added in add2stem()"

 s.0=n /* update total number of entries in stem */

 return

/* yields:

 # 1: Entry # 1

 # 2: Entry # 2

 # 3: Entry # 3 added in add2stem()

*/

 8

Stem, ooRexx USE ARG

"stemroutine1.rex": No EXPOSE
s.1="Entry # 1"

s.2="Entry # 2"

s.0=2 /* total number of entries in stem */

call add2stem s. /* supply stem as an argument! */

do i=1 to s.0 /* iterate over all stem array entries */

 say "#" i":" s.i

end

::routine add2stem

 use arg s. /* USE ARG allows to directly refer to the stem */

 n=s.0+1 /* add after last current entry */

 s.n="Entry #" n "added in add2stem()"

 s.0=n /* update total number of entries in stem */

 return

/* yields:

 # 1: Entry # 1

 # 2: Entry # 2

 # 3: Entry # 3 added in add2stem()

*/

5

 9

Stem, ooRexx USE ARG

"stemroutine2.rex": No EXPOSE
s.1="Entry # 1"

s.2="Entry # 2"

s.0=2 /* total number of entries in stem */

call add2stem s. /* supply stem as an argument! */

do i=1 to s.0 /* iterate over all stem array entries */

 say "#" i":" s.i

end

::routine add2stem /* we can even use a different stem name */

 use arg abc. /* USE ARG allows to directly refer to the stem */

 n=abc.0+1 /* add after last current entry */

 abc.n="Entry #" n "added in add2stem()"

 abc.0=n /* update total number of entries in stem */

 return

/* yields:

 # 1: Entry # 1

 # 2: Entry # 2

 # 3: Entry # 3 added in add2stem()

*/

 10

About Directives in ooRexx

• Always placed at the end of a Rexx program

– led in by "::" followed by the name of the directive

• "routine", "class", "attribute", "method", ...

• Instructions to the ooRexx interpreter before program starts

– Interpreter sequentially processes and carries out directives in

the setup phase (phase 2) of startup

– After all directives got carried out, the execution phase of the

Rexx program starts by executing the first line

• An ooRexx program with directives

– Defines a "package" of routines and classes

– Rexx code before the first directive is also named "prolog"
6

 11

::Routine Directive

• Syntax

::routine name [public]

– Interpreter maintains routines (and classes) per

Rexx program ("package")

– If optional keyword public is present, the routine can

be also directly invoked by another (!) Rexx program

 12

::ROUTINE Directive, Example

"routine.rex"
r=" 1 "

s=2

say "r="pp(r)

say "s="pp(s)

say

say "The result of 'r || 3 ' is:" pp(r || 3)

say "The result of 's || 3 ' is:" pp(s || 3)

say "The result of 'r + 3' is:" pp(r + 3)

say "The result of 's + 3' is:" pp(s + 3)

say

say "The result of 'r s' is:" pp(r s)

say "The result of 'r || s' is:" pp(r || s)

say "The result of 'r+s' is:" pp(r+s)

::routine pp -- enclose argument in square brackets

 parse arg value

 return "["value"]"

/* yields:

 r=[1]

 s=[2]

 The result of 'r || 3 ' is: [1 3]

 The result of 's || 3 ' is: [23]

 The result of 'r + 3' is: [4]

 The result of 's + 3' is: [5]

 The result of 'r s' is: [1 2]

 The result of 'r || s' is: [1 2]

 The result of 'r+s' is: [3]

*/

7

 13

::ROUTINE Directive, Example

"toolpackage.rex"
-- collection of useful little Rexx routines

::routine pp public -- enclose argument in square brackets

 parse arg value

 return "["value"]"

::routine quote public -- enclose argument in double-quotes

 parse arg value

 return '"' || value || '"'

 14

::ROUTINE Directive, Example

"call_package.rex"
call toolpackage.rex -- get access to public routines in "toolpackage.rex"

say quote('hello, my beloved world')

r=" 1 "

s=2

say "r="pp(r)

say "s="pp(s)

say

say "r="quote(r)

say "s="quote(s)

say

say "The result of 'r || 3 ' is:" pp(r || 3)

say "The result of 's || 3 ' is:" quote(s || 3)

say "The result of 'r + 3' is:" pp(r + 3)

say "The result of 's + 3' is:" quote(s + 3)

/* yields:

 "hello, my beloved world"

 r=[1]

 s=[2]

 r=" 1 "

 s="2"

 The result of 'r || 3 ' is: [1 3]

 The result of 's || 3 ' is: "23"

 The result of 'r + 3' is: [4]

 The result of 's + 3' is: "5"

*/

8

 15

::REQUIRES Directive

• Syntax

::requires "package.rex"

– Interpreter in (setup) phase 2 will either

• Call (execute) the Rexx program in the file named

"package.rex" on behalf of the current Rexx program

and make all its public routines and classes upon

return directly available to us

• Or if the interpreter already has required that

"package.rex" it will immediately make all its public

routines and classes available to us

– In this case "package.rex" will not be called (executed) anymore!

 16

::REQUIRES-Directive, Example

"requires_package.rex"
say quote('hello, my beloved world')

r=" 1 "

s=2

say "r="pp(r)

say "s="pp(s)

say

say "r="quote(r)

say "s="quote(s)

say

say "The result of 'r || 3 ' is:" pp(r || 3)

say "The result of 's || 3 ' is:" quote(s || 3)

say "The result of 'r + 3' is:" pp(r + 3)

say "The result of 's + 3' is:" quote(s + 3)

::requires toolpackage.rex -- get access to public routines in "toolpackage.rex"

/* yields:

 "hello, my beloved world"

 r=[1]

 s=[2]

 r=" 1 "

 s="2"

 The result of 'r || 3 ' is: [1 3]

 The result of 's || 3 ' is: "23"

 The result of 'r + 3' is: [4]

 The result of 's + 3' is: "5"

*/

9

 17

The Message Paradigm, 1

• A programmer sends messages to objects

– The object looks for a method routine with the same

name as the received message

– If arguments were sent the object forwards them

– The object returns any value the method routine returns

• C.f. <https://en.wikipedia.org/wiki/Alan_Kay>

– One of the fathers of Smalltalk's "object-orientation"

• Programming languages with this paradigm, e.g.

– Smalltalk, Objective C, ...

 18

The Message Paradigm, 2

ooRexx

• Proper message operator "~" (tilde, "twiddle")

• In ooRexx everything is an "object"

– Hence one can send messages to everything!

• Example

say "hi, Rexx!"~reverse

-- same as in classic REXX:

say reverse("hi, Rexx!")

-- both yield (actually run the same code):

!xxeR ,ih
10

 19

The Message Paradigm, 3

ooRexx

• Creating "values" a.k.a. "objects", "instances"

Classic Rexx-style (strings only)

str="this is a string"

ooRexx-style (any class/type including .string class)

str=.string~new("this is a string")

 20

About Classic REXX Structures, 1

Important Usage of Stems

• Whenever structures ("records") are needed, stems get

used in classic REXX

• Example

– A person may have a name and a salary, e.g.

p.name = "Doe, John"

p.salary= "10500"

– E.g. a collection of data with a person structure

p.1.name = "Doe, John"; p.1.salary=10500

p.2.name = "Doe, Mary"; p.2.salary=8500

p.0 = 2

11

 21

About Classic REXX Structures, 2

Important Usage of Stems

• Whenever structures ("records") need to be

processed, every Rexx programmer must know the

exact stem encoding!

• Everyone must implement routines like increasing

the salary exactly like everyone else!

• If structures are simple and not used in many

places, this is o.k., but the more complex the more

places the structure needs to be accessed, the more

error prone this becomes!

 22

About ooREXX Structures, 1

Classes (Types, Structures)

• Any object-oriented language makes it easy to

define and implement structures!

– That is what they were designed for!

• The structure ("class", "type") usually consists of

– Attributes (data elements like "name", "salary"),

a.k.a. "object variables", "fields", ...

– Method routines (like "increaseSalary")

12

 23

About ooREXX Structures, 2

Classes (Types, Structures)

• ::CLASS Directive

–Denotes the name of the structure

–Can optionally be public

• ::ATTRIBUTE Directive

–Denotes the name of a data element, field

• ::METHOD Directive

–Denotes the name of a routine of the structure

–Defines the Rexx code to be run, when invoked

 24

About ooREXX Structures, 3

Classes (Types, Structures)

• Once

–A structure ("class", "type" both of which are

synonyms of each other) got defined

–One can create an unlimited (!) number of

persons ("instances", "objects", "values", all of

which are synonyms)

• Each person will have its own copy of attributes

(data elements, fields)

• All persons will share/use the same method routines

that got defined for the structure (class, type)
13

 25

ooRexx Structure "Person"

"personstructure.rex"
p=.person~new("Doe, John", 10500)

say "name: " p~name

say "salary:" p~salary

::class person -- define the name

::attribute name -- define a data element, field, object variable

::attribute salary -- define a data element, field, object variable

::method init -- constructor method routine (to set the attribute values)

 expose name salary -- establish direct access to attributes

 use arg name, salary -- fetch and assign attribute values

/* yields:

 name: Doe, John

 salary: 10500

*/

 26

Defining the ooRexx Class (Type)

"person.cls"

::class person PUBLIC -- define the name, this time PUBLIC

::attribute name -- define a data element, field, object variable

::attribute salary -- define a data element, field, object variable

::method init -- constructor method routine (to set the attribute values)

 expose name salary -- establish direct access to attributes

 use arg name, salary -- fetch and assign attribute values

14

 27

Defining the ooRexx Class (Type)

"requires_person.rex"
p.1 = .person~new("Doe, John", 10500)

p.2 = .person~new("Doe, Mary", 8500)

p.0 = 2

sum=0

do i=1 to p.0

 say p.i~name "earns:" p.i~salary

 sum=sum+p.i~salary

end

say

say "Sum of salaries:" sum

::requires person.cls -- get access to the public class "person" in "person.cls"

/* yields:

 Doe, John earns: 10500

 Doe, Mary earns: 8500

 Sum of salaries: 19000

*/

 28

ooRexx Classes and Beyond ...

• ooRexx comes with a wealth of classes

– A lot of tested functionality for "free" ;-)

– E.g., the collection classes augment what stems are

capable of doing!

• Explore the collection classes and you will

immediately be much more productive!

• If seeking arrays, you have them: .Array class

– Consult the pdf-books coming with ooRexx, e.g.,

• "ooRexx Programming Guide" (rexxpg.pdf)

• "ooRexx Reference" (rexxref.pdf)15

 29

Roundup

• ooRexx is great and compatible to classic REXX

– You can continue to program in classic REXX, yet use

ooRexx on Linux, MacOS, Windows, s390x...

• ooRexx adds a lot of flexibility and power to the REXX

language and to your fingertips

– One can take advantage of all of it immediately

– Simple to use because of the message paradigm

• Send ooRexx messages to Windows and MS Office ...

• Send ooRexx messages to Java ...

• Send ooRexx messages to …

• Get it and have fun! :-)

 30

Links

• RexxLA-Homepage (non-profit SIG, owner of ooRexx, BSF4ooRexx)

<http://www.rexxla.org/>

• ooRexx 5.0 on Sourceforge

<https://sourceforge.net/projects/oorexx/files/oorexx/5.0.0/>

– Introduction to ooRexx on Windows, Slides ("Business Programming 1")

• <http://wi.wu.ac.at/rgf/wu/lehre/autowin/material/foils/>

• BSF4ooRexx850 on Sourceforge (ooRexx-Java bridge)

<https://sourceforge.net/projects/bsf4oorexx/>

– Introduction to BSF4ooRexx (Windows, Mac, Unix), Slides ("Business Programming 2")

• <http://wi.wu.ac.at/rgf/wu/lehre/autojava/material/foils/>

• Student's work, including ooRexx, BSF4ooRexx

<http://wi.wu.ac.at/rgf/diplomarbeiten/>

• JetBrains "IntelliJ IDEA", powerful IDE for all operating systems

– <https://www.jetbrains.com/idea/download>, free "Community-Edition"

• Students and lecturers can use the professional edition for free

– Alexander Seik's ooRexx-Plugin with readme (as of: 2023-05-09)

• <https://sourceforge.net/projects/bsf4oorexx/files/Sandbox/aseik/ooRexxIDEA/GA/2.2.0/>

• Introduction to ooRexx (254 pages, covers ooRexx 4.2)

 <https://www.facultas.at>

16

2

Tutorial: Stems a Different Way -
Introducing ’oo’ in ooRexx – Rony G.
Flatscher

Date and Time

14 May 2023, 14:15:00 UTC

Presenter

Rony G. Flatscher

Presenter Details

Ronyworks as a professor for Business informatics (”Wirtschaftsinformatik”) at
the Vienna University of Economics and Business Administration (Wirtschafts-
universitätWien) andusesOpenObject REXX for teachingBusinessAdministration
and MIS students the object-oriented paradigm, as well as remote-controlling
(automating) Windows and Windows end-user applications (e.g. MS Office,
OpenOffice) aswell as Java and Java applications (he is the author of BSF4ooREXX,
the ooREXX-Java bridge,whichusesApacheBSF andhadRony invited to become
an ASF member). He consults and trains in all of his research fields.

17

Stems a Different Way -

Introducing 'oo' in 'ooRexx

The 2023 International Rexx Symposium

Almere, The Netherlands

May 14th – May 17th 2023

© 2023 Rony G. Flatscher (Rony.Flatscher@wu.ac.at, http://www.ronyRexx.net)

Wirtschaftsuniversität Wien, Austria (http://www.wu.ac.at)

 2

Overview

● Data type, abstract data type

– REXX: strings, stem variables ("stems")

– ooRexx in addition: Classes, Attributes, Methods

● Collecting values

– REXX (and ooRexx): "Stem arrays"

– ooRexx: real arrays

● Roundup

18

 3

Data Type (DT), 1

● Data type

– Defines set of valid values

– Defines operations with those values (e.g. addition,

concatenation)

– Example 1

● Data type Birthday

– Defined values consist of a combination of

● A valid date attribute and a valid time attribute

– Defined operations

● Set, query and change its date and time attributes

 4

Data Type (DT), 2

– Example 2

● Data type Person

– Defined values consist of a combination of

● firstName, lastName, salary attributes

– Defined operations

● Set, query and change its firstName, lastName, salary

attributes

● increaseSalary

19

 5

Data Type (DT), 3

REXX-Problems

● No means to explicitly define data structures

● No means to explicitly define operations restricted

to certain data types

● Data structures can be mimicked with

– Strings

– Stem variables

 6

Data Type (DT), 4

REXX, Possible Solution, 1

● Encode a data structure in a string

– E.g. for the data type Birthday

"2005-09-01 16:00"

"2008-02-29 19:19"

– E.g. for the data type Person

"Albert Einstein 45000"

"Vera WithAnyName 25000"

● Processing possible only if everyone knows

– Number and sequence of encoded fields/attributes

– Where the fields/attributes start and end20

 7

Data Type (DT), 5

REXX, Possible Solution, 2

● Represent a data structure with a stem variable

– E.g. for the data type Birthday

birthday.0date="2005-09-01"; birthday.0time="16:00"

birthday.0date="2008-02-29"; birthday.0time="19:19"

– E.g. using a "stem-array" for data type Person

person.1.firstname="Albert"; person.1.lastname="Einstein";

person.1.salary="45000"

person.2.firstname="Vera"; person.2.lastname="WithAnyName";

person.2.salary=25000

● Processing possible if name of fields/attributes is

known!

 8

Data Type (DT), 6

REXX, Considerations

● DT-Structure

– Encoding as strings or in stems

● Crook, as implementation dependent!

● Error-prone!

● DT-Operations

– No means to define operations restricted to data types!

● No means to hide values/instances of data types from

the programmer in order to shelter them from

programming errors!

– Everyone must know implementation (encoding) details!
21

 9

Abstract Data Type (ADT), 1

● Abstract Data type (ADT)

– Schema for implementing data types

● Definition of attributes

– Yields the data structure

● Definition of operations ("methods")

– Yields the behaviour

– Schema must be implemented

● REXX is not designed for it, hence not suitable!

● ooRexx is an object-oriented language and hence

predestined ! :-)

 10

Abstract Data Type (ADT), 2

● Implement any ADT in ooRexx with directives

::CLASS name

::ATTRIBUTE name

::METHOD name

Hint: Rexx method routines are able to directly access

attributes of its class by using as their first instruction the

EXPOSE keyword instruction listing the attributes

● "Instances" ("objects", "values")

– Distinct to any other instance/object/value

– Possess all the same structure and behaviour22

 11

Abstract Data Type (ADT), 3

Implementing ADT "Birthday", 1
/* an ooRexx program that implements an ADT! */

::CLASS BirthDay /* name of the structure/class */

::ATTRIBUTE date

::ATTRIBUTE time

● Creating values/instances/objects

– Simply send the message NEW to the Rexx-Class

named .Birthday

– Message operator is the tilde (~), hence e.g.

bd1=.Birthday~new /* create a value */

bd2=.Birthday~new /* create another value */

...

 12

Abstract Data Type (ADT), 4

Implementing ADT "Birthday", 2
/* an ooRexx program that implements an ADT! */

bd1=.BirthDay~new

bd1~date="2005-09-01"

bd1~time ="16:00"

bd2=.BirthDay~new

bd2~date="2008-02-29"

bd2~time ="19:19"

say "BirthDay 1:" bd1~date bd1~time

say "BirthDay 2:" bd2~date bd2~time

::CLASS BirthDay /* name of the structure/class */

::ATTRIBUTE date

::ATTRIBUTE time

Output:

BirthDay 1: 2005-09-01 16:00

BirthDay 2: 2008-02-29 19:19

23

 13

Excursus: Scopes, 1

REXX

● Scopes

– Determine the visibility of variables, attributes, routines

and classes

● REXX-Scopes

– Standard-Scope

● Labels and variables are visible throughout the program

– Procedure-Scope

● Variables of internal routines followed by the PROCEDURE

keyword statement are locally visible only

 14

Excursus: Scopes, 2

ooRexx, 1

● Additional ooREXX-Scopes

– Program-Scope

● All Routine-directives and Class-directives of a

program are visible in the entire program

● In addition all public routines and public classes

defined in another program become visible and directly

accessible after that program got invoked/required !

24

 15

Excursus: Scopes, 3

ooRexx, 2

● Additional ooREXX-Scopes

– Routine-Scope

● Managed as if it was a proper REXX-Programm

– Standard-Scope

● Therefore can include internal routines

– Procedure-Scope

● Can access all the routines and classes of the program

– Program-Scope

 16

Excursus: Scopes, 4

ooRexx, 3

● Additional ooREXX-Scopes

– Method-Scope

● Like Routine-Scope

● In addition

– Direct access to attributes of its class possible

● First instruction must be the EXPOSE-keyword instruction

with blank delimited attribute names

25

 17

Excursus: Scopes, 5

Overview
● REXX and ooRexx

– Standard-scope: labels, variables

– Procedure-scope: local variables

● ooRexx

– Programm-scope: routines, classes

– Routine-scope

● Like a proper program

● Scopes: Standard, Procedure, Program

– Method-Scope

● Like Routine-Scope

● Additionally: EXPOSE allows direct access to attributes of the class

 18

Abstract Data Type (ADT), 5

Implementing ADT "Person", 1
p1=.person~new /* create an instance/value/object */

p1~firstName ="Albert"

p1~lastName="Einstein"
p1~salary =45000

p2=.person~new /* create an instance/value/object */

p2~firstName ="Vera"

p2~lastName="WithAnyName"
p2~salary =25000

say "Person 1: " p1~firstName p1~lastName p1~salary

say "Person 2: " p2~firstName p2~lastName p2~salary

say "sum of salaries:" p1~salary + p2~salary

::CLASS Person /* name of the structure/class */

::ATTRIBUTE firstName

::ATTRIBUTE lastName

::ATTRIBUTE salary

Output:

Person 1: Albert Einstein 45000

Person 2: Vera WithAnyName 25000

sum of salaries: 70000 26

 19

Abstract Data Type (ADT), 6

Implementing ADT "Person", 2
p1=.person~new /* create an instance/value/object */

p1~firstName ="Albert"

p1~lastName="Einstein"
p1~salary =45000

p2=.person~new /* create an instance/value/object */

p2~firstName ="Vera"

p2~lastName="WithAnyName"
p2~salary =25000

say "Person 1: " p1~firstName p1~lastName p1~salary

say "Person 2: " p2~firstName p2~lastName p2~salary

p1~increaseSalary(10000) /* increase salary */

say "Person 1: ->" p1~firstName p1~lastName p1~salary

say "sum of salaries: ->" p1~salary + p2~salary

::CLASS Person /* name of the structure/class */

::ATTRIBUTE firstName

::ATTRIBUTE lastName

::ATTRIBUTE salary

::METHOD increaseSalary /* increaseSalary method */

 EXPOSE salary /* access "salary" attribute directly */

 USE ARG increaseBy /* fetch increase amount */

 salary=salary+increaseBy /* add and save result in attribute */

Output:

Person 1: Albert Einstein 45000

Person 2: Vera WithAnyName 25000

Person 1: -> Albert Einstein 55000

sum of salaries: -> 80000

 20

Fun with Methods: INIT, 1

Creating Objects/Instances/Values

● Objects/instances/values

– Can be simply created by sending the message NEW

to the class which will return a newly created value

● If a method INIT exists in the class then it will be

invoked from the NEW method

– If one supplies arguments to the NEW-message,

then they will be forwarded to INIT in the same

order!

– The INIT-method carries also the name "constructor

method" or short: "constructor"

27

 21

Fun with Methods: INIT, 2

Creating Objects/Instances/Values
p1=.person~new("Albert", "Einstein", 45000) /* create with values */

p2=.person~new("Vera", "WithAnyName", 25000) /* create with values */

say "Person 1: " p1~firstName p1~lastName p1~salary

say "Person 2: " p2~firstName p2~lastName p2~salary

say "sum of salaries:" p1~salary + p2~salary

::CLASS Person /* name of the structure/class */

::ATTRIBUTE firstName

::ATTRIBUTE lastName

::ATTRIBUTE salary

::METHOD increaseSalary /* increaseSalary method */

 EXPOSE salary /* access "salary" attribute directly */

 USE ARG increaseBy /* fetch increase amount */
 salary=salary+increaseBy /* add and save result in attribute */

::METHOD INIT /* constructor method */

 EXPOSE firstName lastName salary /* access attributes directly */

 USE ARG firstName, lastName, salary /* assign arguments to attributes */

Output:

Person 1: Albert Einstein 45000

Person 2: Vera WithAnyName 25000

sum of salaries: 70000

 22

Fun with Methods: UNINIT, 1

Destroying Objects/Instances/Values

● Objects/instances/values

– If values are not referenced anymore then the

"garbage collector" destroys them

● If a method with the name UNINIT exists in a class,

then the garbage collector will invoke it right before

destroying the value

– E.g. useful to release global locks, writing logs etc.

– The UNINIT-method is also known as the "destructor

method" or short: "destructor"28

 23

p1=.person~new("Albert", "Einstein", 45000) /* create with values */

p2=.person~new("Vera", "WithAnyName", 25000) /* create with values */

say "Person 1: " p1~firstName p1~lastName p1~salary

say "Person 2: " p2~firstName p2~lastName p2~salary

say "sum of salaries:" p1~salary + p2~salary

drop p2; drop p1 /* delete variables, objects become garbage */

call sysSleep 5 /* sleep five seconds */

say "end of main program!"

::CLASS Person /* name of the structure/class */

::ATTRIBUTE firstName

::ATTRIBUTE lastName

::ATTRIBUTE salary

::METHOD increaseSalary /* increaseSalary method */

 EXPOSE salary /* access "salary" attribute directly */

 USE ARG increaseBy /* fetch increase amount */

 salary=salary+increaseBy /* add and save result in attribute */

::METHOD INIT /* constructor method */

 EXPOSE firstName lastName salary /* access attributes directly */

 USE ARG firstName, lastName, salary /* assign arguments to attributes */

::METHOD UNINIT /* destructor method */

 EXPOSE firstName lastName salary /* access attributes directly */

 say 'Object <'firstName lastName salary'> about to be destroyed...'

Output (maybe):
Person 1: Albert Einstein 45000

Person 2: Vera WithAnyName 25000

sum of salaries: 70000

end of main program!

Object <Vera WithAnyName 25000> about to be destroyed...

Object <Albert Einstein 45000> about to be destroyed...

Fun with Methods: UNINIT, 2

Destroying Objects/Instances/Values

 24

Collecting Values, 1

● "Stem-arrays"

– Convention

● Stem variable with the tail "0" contains the sum of

stored values starting with the tail "1"

– Only possibility in REXX to collect and to process

values

– ooRexx allows for collecting any kind of values in

such stem arrays

29

 25

Collecting Values, 2

"Stem-Arrays", 1
person.1.firstName ="Albert"

person.1.lastName="Einstein"
person.1.slary =45000 /* <-- typical typing error! */

person.2.firstName ="Vera"

person.2.lastName="WithAnyName"
person.2.salary =25000

person.0=2

do i=1 to person.0 /* iterate over all persons */

 say "Person #" i":" person.i.firstName person.i.lastName person.i.salary

end

Output:

Person # 1: Albert Einstein PERSON.1.SALARY

Person # 2: Vera WithAnyName 25000

 26

Collecting Values, 3

"Stem-Arrays", 2
person.1=.person~new("Albert", "Einstein", 45000)

person.2=.person~new("Vera", "WithAnyName", 25000)
person.0=2

do i=1 to person.0 /* iterate over all persons */

 say "Person #" i":" person.i~firstName person.i~lastName person.i~salary

end

::CLASS Person /* name of the structure/class */

::ATTRIBUTE firstName

::ATTRIBUTE lastName

::ATTRIBUTE salary

::METHOD INIT /* constructor method */

 EXPOSE firstName lastName salary /* access attributes directly */

 USE ARG firstName, lastName, salary /* assign arguments to attributes*/

Output:

Person # 1: Albert Einstein 45000

Person # 2: Vera WithAnyName 25000
30

 27

Collecting Values, 4

ooRexx

● ooRexx has real arrays !

– Simple to create

● ooRexx 5.0 even allows creating them from a list

– Easy to use and to iterate over the collection

● E.g. DO...OVER

● Hint

– ooRexx comes with many different kinds of

classes/types that allow one to collect and process

values!

 28

Collecting Values, 5

ooRexx Has Real Arrays, 1
persons=.Array~new /* create an array */

persons[1]=.person~new("Albert", "Einstein", 45000)

persons[2]=.person~new("Vera", "WithAnyName", 25000)

do p over persons /* iterate over all persons */

 say "Person:" p~firstName p~lastName p~salary

end

::CLASS Person /* name of the structure/class */

::ATTRIBUTE firstName

::ATTRIBUTE lastName

::ATTRIBUTE salary

::METHOD INIT /* constructor method */

 EXPOSE firstName lastName salary /* access attributes directly */

 USE ARG firstName, lastName, salary /* assign arguments to attributes */

Output:

Person: Albert Einstein 45000

Person: Vera WithAnyName 25000
31

 29

Collecting Values, 6

ooRexx

● Arrays can be sorted! :)

– Simply define a method named compareTo

● Will receive the other value to compare to by the sort

method defined in the Array class

● Method must return the value

– "1", if our value is regarded to be larger

– "0", if both values are regarded to be the same

– "-1", if other value is regarded to be larger

 30

Collecting Values, 7

ooRexx Has Real Arrays, 2
persons=.Array~new /* create an array */

persons[1]=.person~new("Albert", "Einstein", 45000)

persons[2]=.person~new("Vera", "WithAnyName", 25000)

do p over persons~sort /* iterate over all persons in sorted order */

 say "Person:" p~firstName p~lastName p~salary

end

::CLASS Person /* name of the structure/class */

::ATTRIBUTE firstName

::ATTRIBUTE lastName

::ATTRIBUTE salary

::METHOD INIT /* constructor method */

 EXPOSE firstName lastName salary /* access attributes directly */

 USE ARG firstName, lastName, salary /* assign arguments to attributes*/

::METHOD compareTo /* comparison method for sorting */

 EXPOSE salary /* access attribute directly */

 use arg other /* other person to compare to */

 if other~salary<salary then return 1 /* our salary is greater */

 if other~salary=salary then return 0 /* salaries are the same */

 return -1 /* other salary is greater */

Output:
Person: Vera WithAnyName 25000

Person: Albert Einstein 45000

32

