Agile Scrum
Handbook :

3rd Edition

7 1RO
//// ? R
1l f II{// \

/74
;(

FusbisRING Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum Handbook - 3rd edition

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Other publications by Van Haren Publishing

Van Haren Publishing (VHP) specializes in titles on Best Practices, methods and standards

within four domains:

- IT and IT Management

- Architecture (Enterprise and IT)
- Business Management and

- Project Management

Van Haren Publishing is also publishing on behalf of leading organizations and companies:
ASLBISL Foundation, BRMI, CA, Centre Henri Tudor, CATS CM, Gaming Works, IACCM,
IAOP, IFDC, Innovation Value Institute, IPMA-NL, ITSqc, NAF, KNVI, PMI-NL, PON,
The Open Group, The SOX Institute.

Topics are (per domain):

IT and IT Management
ABC of ICT

ASL®

CMMI®

COBIT

e-CF

ISO/IEC 20000
ISO/IEC 27001/27002
ISPL

IT4IT®

IT-CMF™

IT Service CMM
ITIL®

MOF

MSF

SABSA

SAF

SIAM™

TRIM

VeriSM™

Enterprise Architecture
ArchiMate®

GEA®

Novius Architectuur
Methode

TOGAF°®

Project Management
A4-Projectmanagement
DSDM/Atern

ICB/ NCB

ISO 21500

MINCE®

M_o_R°

MSp®

P30°

PMBOK ® Guide
Praxis®

PRINCE2°

Business Management
BABOK °® Guide
BiSL® and BiSL°® Next
BRMBOK™

BTF

CATS CM®

DID®

EFQM

eSCM

IACCM

ISA-95

ISO 9000/9001
OPBOK

SixSigma

SOX

SqQEME®

For the latest information on VHP publications, visit our website: www.vanharen.net.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum Handbook

3rd edition

Nader K. Rad

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Colophon

Title: Agile Scrum Handbook - 3rd edition

Author: Nader K. Rad

Text editor: Stephen Brightman

Publisher: Van Haren Publishing, ‘s-Hertogenbosch-NL,
www.vanharen.net

DTP: Coco Bookmedia, Amersfoort

ISBN Hard copy: 978 94 018 0759 3

ISBN eBook (pdf): 978 94 018 0760 9

ISBN ePUB: 978 94 018 0761 6

Edition: Third edition, first impression, April 2021

Copyright: Nader K. Rad & Van Haren Publishing

For further information on Van Haren Publishing, e-mail to: info@vanharen.net.

Copyright:
All rights reserved. No part of this publication may be reproduced in any form by

print, photo print, microfilm or any other means without written permission by the
publisher.

Trademark notices

DSDM® is a registered trademark of Agile Business Consortium Limited.

ITIL®, MOV®, MSP®, PRINCE2® and PRINCE2 Agile® are registered trademarks of
AXELOS Limited.

PMBOK® Guide is a registered trademark of The Project Management Institute, Inc.
Nexus™ is a trademark of Scrum.org.

Scrum@Scale™ is a trademark of Scrum Inc.

LeSS™ is a trademark of The LeSS Company B.V.

SAFe™ is a trademark of Scaled Agile Inc.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Contents

1. THEAGILITY CONCEPTttt ittt ittt ittt ttineennecnnnnennns 1
1.1 The Development APProaches ... eveeereririrtetesesesese ettt 2
1.1.1 The predictive apProach ...ttt eaees 2

1.1.2 The adaptive approach ... 4

1.2 Selecting a Development APProachcceeeerenieeneninenieeseneeeeeesieesieseeeees 8
1.3 Is Agile Only Suitable for IT DeVelopmMent?.......cccevvereerienenenerenenieesreneeenees 9
R T B o o =T TSRO PURRRRRT 9

T.3.2 PrOQramMIS... ettt sttt sae s sre sttt ae s s b sre s 10

1.3.3 OPEIAtIONS .ottt sttt et s st 10

T4 IS AQIlE FASTRIT ittt sttt sttt be b b s 10
1.5 IS AGIE NBW? ..ttt ettt sttt st e b et s b e sbesae e s 11
2o SERUIN G oo oo oo000000000000000000 00N 13
21 SCrUM @S @ FramMEWOTK ...coveieiriiieiirceneeceneeeeetee e e ne 13
2.2 SCrUM @S @ WEAPPET oottt ettt sttt a et snesresre s 14
2.3 THe SCrUM STFUCTUNE ..ottt ettt ettt et sttt 14
2.3 1 PROPIE ettt s s n 15

2.3.2 EVENES ottt s 24

2.3.3 ArtifaCES e 36

2.4 SCAlEA SCrUM .ttt ettt ettt b sttt b bt sbe e e ee 46
2470 ROIES .ttt 47

2.4.2 EVENES ittt 49

2,43 ArtIfaCES ottt 51

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

VI

S ST b ca o ooo0a 000000000 00000 0000t 53
3.1 The COCKDUIN SCAl@ ..ottt 53
3.2 FrequUeNnt REIEASE ...ttt sttt 54
3.3 Osmotic COMMUNICATION ...cocueiiieriiriiriieieteteteeee ettt e e e 54
3.4 WalKing SKEIETON ..cueviiiieieieieite ettt st 55
3.5 INfOrmation RAiAtorscccevecireieirieiriretseieeeteree et see e sae s s 55

3.5.1 ESCaAped defellS ittt sttt 57
3.5.2 Progress informationccocreirenennenneneeeeneeseee e 58
3.5.3 Niko-NikO CAlE@NAAr ...coiiiiiieiririeeteeeeeee et 63
4. EXTREME PROGRAMMING.ttt intintintenennransonennsnnss 65
41 Daily ROULINE c..niieeieieietet ettt ettt sttt st be st 65
A0 PaININGuiiiiiiiiieieiereseneeee ettt ettt sttt et e sae st e sb e s b bttt et entenaesrs 65
4.1.2 ASSIGNIMENT ..ttt ettt s e st s sre s s e e e e e sanes 66
413 DESIGN ittt 66
404 WIITE TEST .ttt ettt sttt sttt sbe s 67
415 COUR ittt 67
476 REFACTON .ottt et 68
407 INTEGIALE oottt s s 68
47,8 GO NOME! .ttt ettt ettt sbene 69
4.1.9 Stand-Up MEELINGS ..ceeerieieietertereereeeeeetet ettt sttt sre b e 69
4070 TracKing .oeeeeecieieriererereeee ettt ettt sbe st sbesbessa st e s e besbesbesaas 69
4717 RiSK MaANAGEMENT...couiiiiiiiieieteeeteeteeriee ettt b e saene 69
4.2 SPIKING ettt ettt sttt etttk st sa et b et b 70
4.3 The Nature Of IEEBMS c..cveireieeieirereeret ettt sttt sa e s e s sesbenes 70
4.3 THE WO FUIES ..ottt sttt et sbe e 71
4.3.2 INVEST cteteeeteteestertei ettt ettt b et sttt s b e b nbne 72
4.3.3 USEI STOM@S ittt ettt ettt st sb sttt et sbesre s 72
4.4 ESTMATING ettt ettt sa e s sb s bttt se b sre b ene 74
447 TAEAI-EIME .ttt ettt sttt s b eas 74
4.4.2 SEOIY POINTS..ciiiiiiriirieieeeetete ettt sn e r e b sre s 76
A.4.3 T-SNIrTSIZES weoviieiieieeeeteee ettt ettt ettt sa e sbene 77
444 VElOCITY cueruirieiiieriereeeeeete ettt sttt et sae bbbt ettt sa b sbesbesnes 78
4.4.5 Planning POKET ..ccueveveririeterterteneseseseet ettt steste s s st et e ssessesbesaesnes 82
4.4.6 TriaNQUIATION .oeeiiieiiieeeeeee ettt 85
4.4.7 Affinity @StIMAatioN c..ccoiiieeieieee ettt 86
4.4.8 Re-eStIMAtiNG .ccevirieeeieieteierterereees ettt sttt r e s sbe s 87
4.5 FEedbatK I0OPS .ottt sae st ne e bbb i ene 87
4.6 The Planning ONiON ... ettt sttt ere st sae e s e sbe s 89

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

T DRI Lo eoo0000000000000000000 000 91
5.1 ProjeCt CONSTIAINTS..cciiiiieeeeieeeetete ettt sbe sttt ss e b sbe b sneene 92
5.2 UPTront PIaNNiNg ..ottt st et sse b s sae s 93
5.3 MOSCOW PrioritiZatioNcccccceeeeieiirierienenenenenteteeeesresrese et 94
5.4 EXCEPLIONS ettt ettt bbb 95
5.5 Self-Organization.......cccecvecieinienininieirenieesiestee et sseseese e ste e sseseesesseseesesen 95
5.6 CONErACE TYPES eeeeeeieeeereeeteeete ettt st st sttt e e s e e sae e st e sae e sessbesanesaeens 96

T BUANEEN C o oo o0000000000000000000 0000 A 97
6.1 ViISUAIIZING vttt sttt ettt s sb s a et e s besbesbesaeenis 97
6.2 LIMItING WIP oottt s sre s 98
6.3 PUIIVS. PUSH ettt sttt ettt et et st b sbe e ens 99

7. PHILOSOPHIZING!.ttt iit it iit e tantancnncnnsansnnsnnsas 105
7.1 eXtreme Programming IA@AScccevevirverienirenieerienteteiesteesiet et 105

711 Customer bill of FIghTS ..oovevvivieeeece e 105

7.1.2 Programmer Bill of FIgNtS...c.ooevieirieieieeeeeseeeeee e 107

7.0.3 VAIUBS ettt ettt e 109

7.2 DSDM® IEAS ...cueeueieniriirieirienieietesieit sttt ettt ebe st et be st be st et be st s sbe e ebeeen 110
7.2.1 PRIlOSOPRNY ..ottt 110

7.2.2 PriNCIPIES oottt ettt st ettt sbe s saeene 111

7.3 SCIUM LAAS ...ttt ettt ettt sttt sttt be e st b een 113
7.31 PHllAIS ettt bbb s 113

7.3.2 VAlUBS. ...ttt 114

7.4 The Agile ManifeSto. ..ottt et sae s sae s 115
740 StateMENTH T oot 115

7.4.2 StAteMENTH2 oottt 116

7.4.3 Statement#3 . ..o 116

7.4.4 StatemMeNT H#4 ..ot 117

7.4.5 THe PriNCIPIES oottt 117
(O T IE ZAUTHRIORG 66 0 00 5 0 6 6 0 0 e 121
AIDIE L b e bonoo0000000000000000000 0600 123

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

1. The Agility Concept

There are many myths and misleading concepts about Agile, starting with the answer
to the most basic question in this context: What is Agile?

What you may often hear is ambiguous statements such as “Agile is a mindset”. Agile,
like almost everything else, needs a particular mindset, but it's not correct to say that
Agile is a mindset. Saying that “Agile is a mindset” has only one practical consequence:
It lets certain people do whatever they want and just call it Agile because it's fashiona-
ble these days.

Another common problem in our community is the illusion of the external enemy.
Those of you familiar with the way authoritarian systems work know that they always
need to have an enemy. It helps cover the gaps they have in their system by creating
distractions, and creates a common goal to cover the lack of real, achievable internal
goals. It's sad to see that many Agile practitioners have the same approach, usually for
the personal gain of a few leaders.

It's best for your professional life to be open to different ideas and learn from all of
them without you becoming a cult member. This approach is the first principle in the

Nearly Universal Principles of Projects: https://nupp.guide

So, let's start by talking about the real nature of Agile.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

2 Agile Scrum Handbook

1.1 The Development Approaches

When you're developing a piece of software, the following steps are done in one way
or another, either for separate features or for the solution as a whole:

+ Analyze

* Design

+ Construct

* Integrate

+ Test

You can, of course, use other names for these steps, merge them into fewer steps, or
split them into more - that’s all fine. These steps can be called delivery processes,
which are different from management processes such as planning and monitoring.

So how are you going to arrange and run these processes? Think about a few options
before reading the rest of this chapter.

1.1.1 The predictive approach
You probably have a few options in mind, and they all belong to one of the two generic
forms, which we will discuss next. Each of these options can be called a development
lifecycle or a development approach.

The next figure shows one generic development lifecycle.

High-level Detailed
project plan project plan

l

Scope Architecture el

prediction prediction
roduct

In this lifecycle, each process is completed before we proceed to the next one:

1. First, we completely analyze the requirements and decide what we want to have in
the solution.

2. We then design the architecture of the whole solution and find out the best way to
form the features.

3. Programmers then start building the units.

4. The units are then integrated into one solution.

5. Finally, the solution is fully tested and errors are fixed.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

1. The Agility Concept 3

Obviously, the steps can overlap; e.g., you don't need to wait until all units are complete
before integrating and testing them. As a result, the same lifecycle would look like the
following figure with overlaps:

High-level
project plan
Detailed
I project plan

I
—l
|
doton T |
prediction 1 Integrate
oredicton

prediction

This is not fundamentally different from the previous lifecycle, as we still have a
sequence of development processes as the main driver.

This type of lifecycle is based on an initial investigation to understand what we need
to produce. We have an upfront specification, an upfront design, and consequently, an
upfront plan. That's why some people call it plan-driven development. Furthermore,
we try to predict what we need and how it can be produced, and that's why a common
name for it is predictive development.

Predictive lifecycles are the normal and appropriate way to develop many types of
projects, such as construction. You plan and design first, and then follow those optimi-
zed, well-formed plans and designs. However, this is not a comfortable way of working
in some projects, such as typical IT development projects. You can spend a lot of time
specifying and analyzing the requirements, and then base everything else on that.
What happens next, though? The customer won't be happy when they see the result!
They will ask for changes, and changes are expensive in this lifecycle because you may
have to revise all the previous work.

As it's commonly remarked in the IT industry, the customer doesn’t know what they
want until they see the product. But when do they see the product in a predictive life-
cycle? Towards the end of the project - at which point, the cost of change is at its maxi-
mum.

The Agile community usually refers to predictive systems as waterfall systems.
However, it's not a good idea to use this term because it has developed a negative
connotation, and its use would bias an otherwise rational conversation about the
development approaches.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

4 Agile Scrum Handbook

1.1.2 The adaptive approach

To overcome the problems that IT development projects have with predictive lifecy-
cles, we can sacrifice the comfort and structure of a predictive system and use a diffe-
rent lifecycle that creates the product incrementally, to check it with the customers
and end-users along the way. This is a luxury we have in IT development projects that
not everyone else has. Think about a construction project: There are no meaningful
increments for it, and the product is not usable until the end.

To be fair, this disadvantage of construction projects (where we can't build them incre-
mentally) is balanced with the fact that if you start a project to build a hospital, it
doesn’'t matter how many changes you make, the final result will be a hospital, and
not, for example, a theme park! However, in IT development, you may indeed start a
project to create something like a hospital and end up with something like a theme
park.

So, based on the fact that we can have incremental delivery in IT development projects,
let’s exploit this opportunity with a lifecycle like the on in the next figure.

* Analyze * Analyze * Analyze * Analyze * Analyze
* Design * Design * Design * Design * Design

e Construct * Construct * Construct * Construct * Construct
* Integrate * Integrate * Integrate * Integrate * Integrate
e Test e Test e Test e Test e Test

Iteration #1 Iteration #2 Iteration #3 Iteration #4 Iteration #5

Incremeng Incremeng Incremeng Incremen; Incremen;
Produyct Produyct Produyct Produyct Produyct

There's no real prediction in this lifecycle, as instead of predicting the product and
relying on that prediction, we have short iterations in which we create increments of
the product. Each iteration is focused on a few features that seem promising. We build
each one, show the increment to the customer and end-users, receive their feedback,
and decide what to do in the next iteration. So, instead of predicting, we carry on
with the project and adapt to the feedback. This approach uses an adaptive lifecycle.
“Agile” is the popular name for adaptive systems.

=
=
=
=
=

To create each increment, we need to iterate through all the development processes
during each time window, and that’s why we call those windows iterations, and this
way of development iterative development. In iterative development, each process
(such as design) is repeated multiple times for different elements in the product,
instead of being run once for the whole product.

Normally, iterative development and incremental delivery occur together.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

1. The Agility Concept 5

1.1.2.1 Fixed-scope vs. fixed-duration iterations
In your opinion, is it better to have fixed-scope iterations or fixed-duration ones?

Theoretically, both of them canwork, butin practice, fixed-duration iterations are supe-

rior, because keeping the scope of the iteration fixed, can have the following results:

* You may spend too much time on each feature and add too many bells and whist-
les. Having a fixed duration continuously pushes you to focus on the most valuable
things first.

+ The time you need to complete the scope is usually longer than you expect, which
makes the iterations longer and reduces the number of feedback loops. When
there’s less feedback, there will be less adaptation.

So, that's why almost all Agile methods have fixed-duration iterations, and they usually
insist on respecting these timeboxes. A timebox is a window with a maximum (or fixed)
amount of time, which isn't extended under any circumstances (because if you extend
it once, you will do it all the time).

1.1.2.2 Duration of iterations
Now that the iterations are supposed to be timeboxed, how long should that be for?

We canreceive feedback at any time, but the structured feedback we receive at the end
of each iteration is key. Therefore, shorter iterations give us more structured feedback,
and therefore, more opportunities for adaptation. On the other hand, each iteration
needs to have enough time to produce a number of features worthy of a serious review
with the customer, which means that they can’t be too short.

In the early days of the Agile systems, 4 to 8 weeks seems like a good idea. Nowadays,
shorter durations are more acceptable. The maximum acceptable duration is 4 weeks
in most systems, and durations as short as 1 week seem practical for the current tech-
nologies.

1.1.2.3 Same duration or different durations
In your opinion, is it better to have the same duration for all iterations, or to keep them
flexible?

Having the same duration is more disciplined and instills regularity. In most cases,
there’s no real need to decide about the duration of each timebox separately, which
is why most systems set the same duration for all iterations. You can revise this time-
boxed duration, but you won’t decide about the duration of each iteration separately.

1.1.2.4 What happens inside iterations?
Aniteration is a period of time in which we repeat the development processes. How do
you do that, though?

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

6 Agile Scrum Handbook

Here are the two possibilities:

=D

The one on the left goes through the development processes and runs each of them
for all the features that belong to the iteration. Maybe we can call it mini-predictive.

The one on the right goes through the features, one or a few at a time, and runs all
the development processes for each of them. We can consider it a mini-mini-predictive

system (i.e., almost not predictive).

We prefer the second, feature-based option, mainly because it's the one that's compa-
tible with timeboxed iterations.

|

=T |
p o> S
=T |
=

)i T

When there’s a maximum duration, we may not be done with everything at the end
of the iteration, which means that with the feature-based approach there are a few
features we won't be done with, while with the other approach, we won’t be done with
one or more of the development processes of each of the features, which means that
we won't have any usable output at the end of the iteration and we won't be able to
demonstrate it and receive feedback.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

1. The Agility Concept 7

1.1.2.5 Increment vs. deliverable
Each increment is a deliverable, but not every deliverable is an increment.

We use the term “increment” to refer to the increments of the product, which are, in
the case of IT development, different versions of working software. Each new incre-
ment is a usable version of the same product but with more features, and it has to be
usable to enable reliable feedback.

In contrast, a deliverable can be almost anything you produce in your project. For
example, in a predictive project, the upfront design and upfront plan are deliverables
that can't be considered increments of the product.

Since being Agile is fashionable, some people just call their deliverables increments
and claim to be Agile based on that.

1.1.2.6 Iterations vs. cycles
Every iteration is a cycle, but not every cycle is an iteration.

An iteration is a special type of cycle wherein we repeat our development processes
as well as our management processes. Many systems have cycles, but those cycles
only repeat the management processes and not necessarily the development proces-
ses. The big, monthly cycle and the small, weekly cycle in P3.express, the stages in
PRINCE2®, and the phases in the PMBOK® Guide are all examples of that.

To make this difference clearer, imagine a cycle that has its own planning, monitoring
and controlling, and closing. The fact that these managerial processes are repeated is
the reason their containers are called cycles. Now, imagine it's a predictive project, and
one cycle is about specifying the requirements, the next cycle is about designing the
product, and so on. This is a cyclic system without any iterations.

Unfortunately, some people think that as long as they can identify cycles in their
projects, they can call them iterative and hence Agile, which is not correct. Even worse
than mistaking managerial processes for development processes, some people just
call arbitrary time periods in their projects iterations, and consider, for example,
weekly “iterations” when there’s no real iteration of any processes in them.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

8 Agile Scrum Handbook

1.1.2.7 Testing and quality in agile
The following diagram shows an over-simplified schema of the way testing is done in
each approach:

Iteration #1 Iteration #2 Iteration #3 lteration #4 Iteration #5

Most of the testing activities are at the end of a predictive project, which is when we're
probably late and under a lot of pressure to finish the project as soon as possible. This
pressure may result in dropping some of the tests and compromising on quality.

How about adaptive systems, then?

Well, this problem doesn’t exist in adaptive lifecycles because testing is done conti-
nuously, and so it doesn’t matter when we stop the project, as we will always have the
right ratio of testing.

There are other differences also. For example, the nature of adaptive systems makes it
almost essential to have automated tests. Automated tests may not cover every single
line of code, and there’s an optimum test code coverage that we need to have in our
project. Test code coverage is the ratio of the lines of code tested by automated tests
to the total number of lines.

1.2 Selecting a Development Approach

Each of the predictive and adaptive lifecycles has advantages and disadvantages. The
right choice depends on many factors, but the most important one is the nature of the
product.

You should ask two essential questions before deciding about the type of lifecycle you

need for your project:

1. Does it need to be adaptive? If you don't need to be adaptive, a predictive lifecycle
is more straightforward, more structured, and more predictive. An adaptive system

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

1. The Agility Concept 9

is needed when there is a risk of starting with the idea of creating something like a
hospital and ending up with something like a theme park.

2. Can it be adaptive? This question is even more important than the previous one.
To be adaptive, you must have the possibility of developing iteratively and delive-
ring incrementally in order to receive feedback and adapt. Let’s think of a construc-
tion project once again: Can you design the building iteratively? For example, can
you design the foundation of the building without designing the rest of it, which is
needed to determine the amount of load on the foundation? The answer is simply
no. It's not possible to have iterative development (with the meaning we have for it
in this context) for a construction project. Furthermore, incremental delivery is not
possible in most situations because, on the one hand, the subsets of a building are
not usable, and on the other hand, the feedback generated by one subset may not
be applicable to the rest. So, we can't use an adaptive lifecycle to build a building
(although, don’t confuse this with interior design and decoration, or even renova-
tion, for which we may be able to use an adaptive system).

The main message is that the decision between a predictive and an adaptive approach
is not simply a matter of good and evil, but rather it depends on several factors. They
are both valid approaches, and each of them is more suited to some types of product.

For practice, think about an IT project for upgrading the operating systems of 300
computers in an organization, or an IT project for creating a networking infrastructure
for a very large organization with offices in six locations. In your opinion, which type of
development lifecycle is more suitable for these two projects?

1.3 Is Agile Only Suitable for IT Development?

Most of the examples in this book, as well as other resources about Agile, are about IT
development projects. Does that mean that Agile is limited to IT development projects?

1.3.1 Projects

There are some people who claim that Agile can be used for every type of project, and
the same people usually claim that it's the only correct way of doing projects. They are
usually people who have not experienced any serious project other than non-critical
IT development ones. In reality, there are many types of project where an adaptive
method is either not needed or not possible because we can’t develop them iteratively
and deliver them incrementally.

Aside from the simple fact that Agile is not the one absolute truth and cannot be used
in every project, we can still consider the range of projects that can benefit from an
adaptive system. Is it limited to IT development, or are there other suitable types?

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

10 Agile Scrum Handbook

It may be possible to use Agile in some other types of project, but it requires a profes-
sional, structured effort, which doesn’t seem to have been done yet. There are some
non-IT projects that claim to be Agile, but they usually mistake the meaning of Agility
and are victims of the Cargo Cult effect. Notwithstanding this, IT development will
probably remain the best type of project for adaptive methods.

1.3.2 Programs

Everything said so far has been about projects, but things are different when it comes
to programs. According to MSP®, which is a program management method from the
same family as PRINCE2® and ITIL®, projects may be either adaptive or predictive, but
programs always have to be adaptive. This is so because projects are about products,
while programs are about results. We can predict how to build products, but we can’t
predict how to achieve results.

1.3.3 Operations

Project management methods always start by defining what a project is, because they
are only applicable to projects and not to programs, portfolios, or business as usual
(operations). This has never become a tradition in Agile systems - they don't insist on
being used in projects, and some people have been using them in operations. This has
its roots in IT development, where there’s no clear line between projects (major chan-
ges) and operations, where minor changes are applied to the product. The extreme
version of this notion is visible in DevOps, where the project side (development) and
business as usual side (operations) are merged into one.

1.4 Is Agile Faster?

The word “agile” implies that these methods are faster. While it is very difficult to
confirm or reject this hypothesis, there’s one concept that really helps in Agile projects,
and it's not about the speed with which we develop, but about the set of features we
need to develop (the scope).

Think of an IT project that is supposed to be developed using a predictive method.
One or a few customer representatives would be responsible for identifying and
communicating the requirements. They know that if they miss a requirement, it will be
expensive and troubling to add them in the future, and therefore, they do their best to
identify all requirements. As it turns out, they become too creative in this area and add
requirements that add insufficient value. These extra features require more time and
resources, and also make the product more complicated, which is a serious problem
for future maintenance and expansions.

In an adaptive system, on the other hand, the customer representatives are not forced
to come up with all the requirements upfront, and the chances are therefore lower

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

1. The Agility Concept 11

that strange requirements will be added to the list. Even when there are such requi-
rements, a proper adaptive development system at least helps the representatives
understand their value so they can leave them for last, or even remove them.

In practice, an Agile project that is run properly has the chance of having a smaller
scope, which makes the project faster and less complicated.

As an example, in 2002, Standish Group reported the following rate of use for the
features of four of their internal applications:

Always used: 7% R

Often used: 13% I

Sometimes used: 16% N

Rarely used: 19% I

Never used: 45% I

Imagine how much faster their projects could have been, and how much simpler their
products could have been, if those never-used and rarely-used features had not been
included. This is, of course, only one example of a few applications in one organization,
but the overall trend may not be so different.

1.5 Is Agile New?

Agile is usually advertised as the new approach. The use of the term “Agile” to refer to
adaptive lifecycles is certainly new, but what about the lifecycle itself?

It's difficult to imagine a long history of human beings with many projects and programs
that have been done without any form of adaptive lifecycles. Think of a very popular
type of initiative (project or program) in the olden days: going to war. Could you manage
to wage a war using a predictive approach? Did they plan and design everything at the
beginning? Certainly not. You may have a high-level plan (which is more like a strategy
than a plan) and manage the war one battle (iteration) at a time, and based on the
outcome of each battle, adapt for the rest of the initiative. It's not a pleasant example,
but a clear one that shows that adaptive lifecycles aren't all that new.

So, what is it that is new? It's mainly the use of adaptive systems in IT development
and the name “Agile” that are new. In the old days, IT development projects were very
different and required a precise, predictive method. Later on, as computers evolved,
the nature of those projects and their audiences changed. In most cases, predictive
systems weren't a great choice anymore, but practitioners continued using them. That
was the case until a group of people involved in those projects started reinventing the
adaptive method.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

	Colophon
	Contents
	1. The Agility Concept
	1.1 The Development Approaches
	1.1.1 The predictive approach
	1.1.2 The adaptive approach

	1.2 Selecting a Development Approach
	1.3 Is Agile Only Suitable for IT Development?
	1.3.1 Projects
	1.3.2 Programs
	1.3.3 Operations

	1.4 Is Agile Faster?
	1.5 Is Agile New?

	2. Scrum
	2.1 Scrum as a Framework
	2.2 Scrum as a Wrapper
	2.3 The Scrum Structure
	2.3.1 People
	2.3.2 Events
	2.3.3 Artifacts

	2.4 Scaled Scrum
	2.4.1 Roles
	2.4.2 Events
	2.4.3 Artifacts

	3. Crystal
	3.1 The Cockburn Scale
	3.2 Frequent Release
	3.3 Osmotic Communication
	3.4 Walking Skeleton
	3.5 Information Radiators
	3.5.1 Escaped defects
	3.5.2 Progress information
	3.5.3 Niko-Niko calendar

	4. Extreme Programming
	4.1 Daily Routine
	4.1.1 Pairing
	4.1.2 Assignment
	4.1.3 Design
	4.1.4 Write test
	4.1.5 Code
	4.1.6 Refactor
	4.1.7 Integrate
	4.1.8 Go home!
	4.1.9 Stand-up meetings
	4.1.10 Tracking

	4.2 Spiking
	4.3 The Nature of Items
	4.3.1 The two rules
	4.3.2 INVEST
	4.3.3 User stories

	4.4 Estimating
	4.4.1 Ideal-time
	4.4.2 Story points
	4.4.3 T-shirt sizes
	4.4.4 Velocity
	4.4.5 Planning poker
	4.4.6 Triangulation
	4.4.7 Affinity estimation
	4.4.8 Re-estimating

	4.5 Feedback loops
	4.6 The Planning Onion

	5. DSDM®
	5.1 Project Constraints
	5.2 Upfront Planning
	5.3 MoSCoW Prioritization
	5.4 Exceptions
	5.5 Self-Organization
	5.6 Contract Types

	6. Kanban
	6.1 Visualizing
	6.2 Limiting WIP
	6.3 Pull vs. Push

	7. Philosophizing!
	7.1 Extreme Programming Ideas
	7.1.1 Customer bill of rights
	7.1.2 Programmer bill of rights
	7.1.3 Values

	7.2 DSDM® Ideas
	7.2.1 Philosophy
	7.2.2 Principles

	7.3 Scrum Ideas
	7.3.1 Pillars
	7.3.2 Values

	7.4 The Agile Manifesto
	7.4.1 Statement #1
	7.4.2 Statement #2
	7.4.3 Statement #3
	7.4.4 Statement #4
	7.4.5 The Principles

	About the Author
	Index

