
Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum
Foundation

Page 0

Agile Scrum Foundation

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Colophon

Title: Agile Scrum Founda�on
Authors: Nader K. Rad & Frank Turley

Publisher: Van Haren Publishing, Zaltbommel ISBN
Hard copy: 978 94 018 0279 6
ISBN ebook: 978 94 018 0278 9

Edi�on: First edi�on, first edi�on, October 2014
 Second edi�on, first edi�on, May 2018

Design: Van Haren Publishing, Zaltbommel

Copyright: ©Van Haren Publishing 2018
For further informa�on about Van Haren Publishing please e-mail us at: info@vanharen.net

All rights reserved. No part of this publica�on may be reproduced, distributed, stored in a
data processing system or Published in any form by print, photocopy or any other means
whatsoever without the prior wri�en Consent of the authors and publisher.

All brand, company, and product names are used for iden�fica�on purposes only and may
be trademarks that are the sole property of their respec�ve owners.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum
Foundation

Table of Contents

About the Authors ... 6
The Agility Concept .. 8

Project Delivery Method and Lifecycle .. 8
Predictive vs. Adaptive Lifecycles .. 11
Agile vs. Waterfall .. 11
Is Agile New? .. 12
The Agile Manifesto ... 12
Agile Principles ... 15
Practical Considerations about Adaptive Lifecycles .. 18

Fixed-Scope vs. Fixed-Duration Iterations ... 18
Duration of Iterations .. 19
Same Duration or Different Durations for Iterations? ... 19
What If Some Features Are Not Done? ... 19
What Happens Inside the Iterations? .. 20
Empowerment ... 20

Is It Only for IT Projects? .. 21
Is Agile Faster? ... 21

Scrum ... 24
Methodology vs. Framework ... 24
Quick Overview of the Scrum Framework ... 24
Scrum Roles .. 26

Scrum Team ... 26
Role 1: The Product Owner .. 28
Role 2: The Scrum Master .. 30
Role 3: The Development Team ... 31
Other Roles .. 32
Who Is the Project Manager? .. 32
Pigs and Chickens ... 33
Suitable Workspace ... 33
Osmotic Communication ... 33
Virtual Teams ... 34

Scrum Events .. 34
Introduction to Scrum Events .. 34
Timeboxing ... 35
Event 1: The Sprint ... 35
Event 2: Sprint Planning ... 36
Event 3: Daily Scrum .. 38
Event 4: Sprint Review ... 39
Event 5: Sprint Retrospective .. 40
Activity: Product Backlog Refinement ... 40
Slack ... 41
The First Sprint! .. 41
Release Planning .. 41
Agile Testing ... 42
Planning Onion ... 44

Scrum Artifacts ... 45

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum
Foundation

Artifact 1: Product Backlog .. 45
Product Backlog Items ... 47
Only Functional Features? ... 48
The Two Rules .. 48
Invest on Your Product Backlog Items ... 49
Epics and Themes ... 49
Estimating .. 50

Story Points .. 50
Velocity .. 51
Ideal Hours / Ideal Days ... 52
Velocity vs. Success .. 53
Velocity vs. Velocity ... 53
Planning Poker ... 54
Triangulation .. 55
Triangulation Board ... 55
Affinity Estimation ... 56
Re-estimating ... 57

Ordering the Product Backlog Items .. 57
What’s Value? .. 58
How to Order the Product Backlog .. 59
Value Related Jargon ... 60

Artifact 2: Sprint Backlog ... 61
Unfinished Items at the End of the Sprint ... 62
Done with All Items in the Middle of the Sprint .. 62
Frozen vs. Dynamic .. 62
Unfinished Work vs. Velocity ... 63

Artifact 3: Increment .. 65
Definition of Done .. 66
Definition of Ready .. 66
Monitoring Project Performance ... 67
Monitoring Sprint Progress .. 68
Information Radiators .. 69

Burn-Down Charts .. 69
Burn-Down Bars ... 71
Burn-Up Charts .. 72
Cumulative Flow Diagrams .. 73
Niko-Niko Calendar .. 75

Scaled Scrum .. 75
Roles ... 76
Artifacts .. 77
Events ... 78

Sprint Planning ... 78
Daily Scrums ... 78
Sprint Reviews .. 79
Sprint Retrospective... 80

Extreme Programming ... 82
01. Pairing .. 82
02. Assignment .. 83
03. Design ... 83
04. Write Test... 84

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum
Foundation

05. Code ... 84
06. Refactoring ... 85
07. Integrate... 85
08. Go Home! ... 86
Daily Standup ... 86
Tracking .. 86
Risk Management .. 86
Spiking .. 86

DSDM ... 89
Project Constraints... 89
Upfront Planning .. 91
MoSCoW Prioritization .. 91
Exceptions .. 92
Self-Organization ... 93
Contract Types ... 93

Kanban and ScrumBan ... 96
Kanban ... 96

Visualizing... 96
Limited WIP .. 97
Pull vs. Push .. 97

ScrumBut .. 102
ScrumBan ... 103

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum
Foundation

Page 6

About the Authors

Nader K. Rad is a project management author, speaker, and adviser at
Management Plaza. His career started in 1997, and he has been
involved in many projects in different industries. He has designed a
number of project management courses, prepared a number of e-
learning courses, and written more than 40 books.

Nader has been an official reviewer or consultant for PRINCE2® 2017,
PRINCE2 Agile®, P3.express, and EXIN Agile Scrum Master™.

More about the author: http://nader.pm

Author’s website: https://mplaza.pm

Author’s LinkedIn Profile: be.linkedin.com/in/naderkrad

Frank Turley has been a project manager for more than 15 years. He is
a PRINCE2® Practitioner, a Scrum Master, and a PRINCE2 and Project
Management trainer and coach. He has written a number of PRINCE2®
and Project Management related books and is best known in the
PRINCE2 world for his work in creating the most popular PRINCE2 self-
study training materials.

More about the author: https://mplaza.pm/frank-turley/

Author’s website: https://mplaza.pm

Author’s LinkedIn Profile: http://linkedin.com/in/frankturley

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum
Foundation

Page 7

1
Agility Concept

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum
Foundation

Page 8

The Agility Concept

If your goal is to learn something that can benefit you in your projects, you should consider
two crucial things that are misunderstood most of the time:

1. What you may often hear is “Agile is a mindset”. The fact is that Agile needs a
mindset, like everything else, but it’s not correct to say that it is a mindset. Saying
“Agile is a mindset” has only one practical consequence: being able to work as you
wish, just calling it Agile, without accepting criticism and looking for real
improvements.

2. If you have the slightest familiarity with the way authoritarian systems work, you
know that they always need to have an enemy. This concept fills in the gaps they
have in their system and helps them control the crowd. Many Agile practitioners use
the word “waterfall” to refer to the enemy; and while this “waterfall” is never clearly
defined, they imply that it’s about the established project management systems. If
your goal is success in projects, you don’t need the illusion of an external enemy;
and you should remember that any successful system builds on top of the existing
systems instead of starting from scratch; and while criticism is absolutely necessary,
it has to be with respect and knowledge.

So, let’s start talking about the real nature of Agile.

Project Delivery Method and Lifecycle
When you’re developing a piece of software, the following steps are done in one way or
another, for separate features, or for the solution as a whole:

Analyze
Design
Construct
Integrate
Test

You can, of course, use other names for those steps, merge them into fewer steps, or split
them into more; that’s fine. These steps can be called delivery processes.

Now, the question is, how are you going to arrange and run these processes? Think about a
few options before reading the rest of this chapter.

So, how many options did you think of?

You may have many options in mind, but they should all belong to one of the two generic
forms. By the way, these options can be called the development lifecycle.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum
Foundation

Page 9

One generic lifecycle is something like this:

In this lifecycle, each process is completed before we proceed to the next; i.e. we
completely analyze the requirement and decide what we want to have in the solution; then
we design the architecture of the solution and find out what’s the best way to form the
features. Then, programmers start working on different units, and then units are integrated
into one solution, and then the solution is tested.

Obviously, the steps can overlap; e.g. you don’t need to wait until all units are complete
before integrating and testing them. Your lifecycle may look like this:

This is not fundamentally different from the previous lifecycle; we still have a sequence of
development processes as the main driver for the lifecycle.

As you see, this type of lifecycle is based on an initial effort to understand what we’re going
to produce. We have an upfront specification, upfront design, and consequently, an upfront
plan. That’s why some people call it a plan-driven development. Also, we try to predict what
we want and how it can be produced, and that’s why a common name for it is predictive.

Predictive lifecycles are the normal and appropriate way to develop many projects, such as a
construction project. You plan and design first, and then follow them. However, this is not a
comfortable way to work for some projects.

Think of a typical IT development project. You can spend a lot of time specifying and
analyzing the requirements, and then base everything else on that. What happens next? The
customer won’t be happy when they see the result! They will ask for changes, and changes
are expensive in this lifecycle because you may have to revise all the previous work.

Analyze Design Construct Integrate Test

ProductScope prediction Architecture
prediction

Detailed
project plan

High-level
project plan

Analyze

Design

Construct

Integrate

Test

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum
Foundation

Page 10

As it’s common to say in this industry, the customer doesn’t know what they want until they
see the product. When do they see the product? Towards the end of the project. At that
point, cost of change is maximum.

To overcome this problem, we can sacrifice the comfort and structure of a predictive
lifecycle and use one that creates the product incrementally, i.e. in multiple versions, each
time with more features. This is a luxury we have in IT development projects that not
everyone else can have: multiple versions of working software, each time with more
features. Think about a construction project; there are no meaningful increments for that,
and the product is not usable until the end.

To be fair, this disadvantage of a construction project is balanced with the fact that if you
start a project to build a hospital, it doesn’t matter how many changes you have, the final
result will be a hospital, not, for example, a theme park! However, in IT development, you
may start a project to create something like a hospital and end up with something like a
theme park.

So, we can have incremental delivery in IT development projects; let’s exploit this
opportunity by a lifecycle like this:

There’s no real prediction in this lifecycle. Instead of predicting the product and relying on
that, we have short periods of time in which we create increments of the product. We will
show the increment (latest version of the product) to the customer and end-users, receive
their feedback, and decide what to do in the next period of time. So, instead of prediction,
we go on with the project and adapt to the feedback. What would you like to call this
lifecycle? “Adaptive” is a great name: adaptive lifecycle.

To create each increment, we need to run all development processes during that period of
time. In the next period, we will repeat the processes: we iterate. That’s why this method of
development is sometimes called iterative development. Respectively, the periods of time
within which we iterate can be called iterations. This is not the only name used for that; you
may already know at least one more name for iterations. We’ll get back to this topic soon.

Analyze
Design
Construct
Integrate
Test

Analyze
Design
Construct
Integrate
Test

Analyze
Design
Construct
Integrate
Test

Analyze
Design
Construct
Integrate
Test

Analyze
Design
Construct
Integrate
Test

Analyze
Design
Construct
Integrate
Test

Increment
(product)

Increment
(product)

Increment
(product)

Increment
(product)

Increment
(product)

Increment
(product)

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum
Foundation

Page 11

Predictive vs. Adaptive Lifecycles
Each of the predictive and adaptive lifecycles have advantages and disadvantages. The right
choice depends on many factors, but the most important one is the nature of the product.

You can ask two essential questions before deciding the type of lifecycle you need for your
project:

1. Do I need to be adaptive? Because if you don’t, a predictive lifecycle is…well, it’s
more predictive! It’s easier and more structured. An adaptive system is needed when
there is a risk of starting with the idea of creating something like a hospital and
ending up with something like a theme park.

2. Can I be adaptive? This question is even more important. To be adaptive, you must
have the possibility of developing iteratively and delivering incrementally. Let’s think
of a construction project once again: can you design the building iteratively? Can you
design the foundation without designing the rest of the building that will determine
the amount of load on the foundation? The answer is simply NO! It’s not possible to
have iterative development for a construction project. Also, incremental delivery is
not possible, as we discussed before. So, we can’t use an adaptive lifecycle to build a
building (don’t confuse this with interior design and decoration, or even renovation,
for which we may be able to use an adaptive system).

My main message is that Predictive vs. Adaptive is not a matter of good and evil.

As a little practice, think about an IT project for upgrading the operating systems of 300
computers in an organization or an IT project to create a networking infrastructure for a
very large organization with offices in six locations. In your opinion, which development
lifecycle is more suitable for these two projects?

Agile vs. Waterfall
“Agile” is the popular name for systems that use Adaptive lifecycles. That’s how one can
really define Agile, instead of saying “Agile is a mindset”!

Agile “fans” use the word Waterfall to refer to Predictive lifecycles. The word Waterfall is
commonly used to refer to Predictive lifecycles used in IT projects; you don’t hear people
saying “This building was built using a Waterfall method”.

To make sure you know everything when it comes to terminology, you should be aware that
the word Waterfall is practically a curse word these days, and you have the right to get
angry and offended if someone tells you that you are using Waterfall! That’s why I suggest
we use the more formal name in this book: Predictive lifecycle.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum
Foundation

Page 12

Is Agile New?
Agile is usually advertised as the new thing. The use of the term Agile to refer to Adaptive
lifecycles is certainly new, but what about the lifecycle itself?

I don’t know about you, but I have a hard time imagining a long history of human beings
with many projects and programs that have been done without any form of adaptive
lifecycles. Can you think of an example?

I can give you one. Think of a very popular initiative (project or program) in the old days:
going to war. Can you manage a war with a Predictive approach? They plan and design
everything in the beginning? Certainly not. You may have a high-level plan that is more like a
strategy than a plan, and manage the war one battle (i.e. iteration) at a time (or a few in
parallel), and based on the outcome of each battle, adapt for the rest of the initiative.

Not a pleasant example, but a clear one that shows Adaptive lifecycles can’t be new.

So, what is it that is new?

In a certain time, the so-called scientific management approach and Taylorism became the
norm, so much so that every other approach was perceived inferior and even wrong.
Taylorism was entirely and strongly based on Predictive systems; therefore, Predictive
systems dominated the whole world, so to speak.

Then we reached the time that more and more IT development projects were initiated, and
Predictive lifecycles were not really the best way to manage those projects. People tried to
tolerate it, while the pressure was increasing, until demonstrations and eventually
revolution happened! Like any other revolution, it devours its children, but that’s a topic for
another time.

The Agile Manifesto
Some people started using Adaptive systems for IT development and gradually structured
them into repeatable management processes. A group of these pioneers got together in
2001 to make it official by giving it a name and creating a manifesto.

Let’s start with the name. As legend has it, the two final options were Agile and Adaptive.
Unfortunately, their decision was Agile. Adaptive would be much better because it describes
the nature of the approach and prevents many misunderstandings.

So, the Agile Manifesto, which is available in the highly advanced and modern website at
AgileManifesto.org, is this:

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum
Foundation

Page 13

We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions Over processes and tools

Working software Over comprehensive documentation

Customer collaboration Over contract negotiation

Responding to change Over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Kent Beck
Mike Beedle
Arie van Bennekum
Alistair Cockburn

Ward Cunningham
Martin Fowler
James Grenning
Jim Highsmith

Andrew Hunt
Ron Jeffries
Jon Kern
Brian Marick

Robert C. Martin
Steve Mellor
Ken Schwaber
Jeff Sutherland

Dave Thomas

© 2001, the above authors. This declaration may be freely copied in any form, but only in its entirety through this notice.

Unfortunately, this manifesto itself has never been subject to adaptation during its life.

A usually overlooked part of the manifesto is the last sentence. I’d like to invite you to read
the manifesto again with the last sentence in mind.

So, let’s review these four statements.

Value 1: Individuals and interactions over processes and tools

Overlooking the importance of individuals and interactions is a very fast way to
fail. After all, it’s the people who do the project. Some managers think they can
overcome problems in this area by using a more sophisticated “system”, but that
rarely, if ever, works.

Many of us have been disappointed by the naive optimism that implementing a
sophisticated tool will solve problems caused by overlooking human aspects, or
even methods, for that matter. Still, managers spend huge sums of money
implementing and maintaining tools, hoping for them to do magic. The fact is
that tools can only facilitate a system; they don’t replace the need for a system.
On the upside, these tools are sophisticated pieces of software that need years
of development and maintenance and create many projects and jobs, which
make it possible for us to invest in thinking about better ways to do IT
development projects!

The part about processes in this statement is a little tricky. It’s actually about a
certain type of process, not processes in general. It’s about processes that are
designed to replace the need for human interactions and complexities. I
personally know managers who believe that if they have a better process, they

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum
Foundation

Page 14

won’t have to hire highly expert professionals. In the meantime, one great aspect
about Agile systems is that they have ALL embedded human aspects in their
processes, instead of just bolting them in or even just talking about the
importance of human aspects, which is, unfortunately, the case with established
project management systems.

So, in summary, processes that try to ignore or replace human aspects are bad,
and processes that address those aspects and make them part of the system are
good.

Value 2: Working software over comprehensive documentation

In contrast to the previous statement, which is correct for all types of projects,
this one is specific to Adaptive systems. It refers to the fact that, instead of using
upfront documentation to predict what needs to happen in a project, we just go
on, create pieces of working software (increments), and use them to adapt.

Value 3: Customer collaboration over contract negotiation

Any project would be more successful with higher levels of customer
collaboration. In Adaptive systems, it’s more than important; it’s necessary. The
customer has to collaborate with you all the time when you’re constantly
specifying new requirements and asking them to check the increments and give
you feedback. If they don’t do it, you won’t be able to adapt.

And contract negotiation is something we all love ;) An ideal Agile project with a
time and material contract and a customer that doesn’t think suppliers are
criminals doesn’t need much contract negotiation. The two parties work together
towards creating a valuable product. However, the ideal is just the ideal, and
customers are still looking for fixed-scope, fixed-price contracts, which have a
fundamental contradiction with Adaptive methods, which is a source of never-
ending contract negotiations similar to those in Predictive projects.

Value 4: Responding to change over following a plan

This statement, similar to the second statement, is specific to Adaptive systems.
Instead of having a Predictive, upfront plan that can show us the way, we are
dependent on adaptation. The latter is usually referred to as “change” in Agile,
probably because it makes customers happy to know they are free to change
everything, but in fact, it’s not a change unless it doesn’t match the initial
baselined plan, which we don’t have in Adaptive systems. Technically, what we
have is a continuous stream of new ideas. However, let’s keep calling them
changes, just for the sake of all customers out there.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum
Foundation

Page 15

Chances are high that you will have questions about the Agile Manifesto in your exam.
It’s not a bad idea to review it multiple times and to even be able to remember the four
statements.

Agile Principles
The Agile Manifesto is pleasantly short. However, the authors thought it might be a good
idea to elaborate on the newly named Agile idea, so they created the following twelve
principles:

Principle 1: Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

After all, we’re doing business, and we need to have happy customers. That’s
obvious. Well, nowadays, we prefer to say that the end-users’ satisfaction is
the ultimate measure because that generates profit for the customer and,
sooner or later, will satisfy the customer in a sustainable way. Too idealistic?

So, how do we satisfy them? That’s by the software we create, which has the
potential to generate value (e.g. money). When we deliver early and
continuously, we will generate the value sooner, and we also have the
opportunity to adapt and create something that the market really wants and
will pay for, rather than something that we expect them to want.

Principle 2: Welcome changing requirements, even late in development. Agile processes
harness change for the customer's competitive advantage.

Let’s do a little more marketing around the word “change” that customers
love ;)

Principle 3: Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

Do you remember the iterations that we talked about – those periods of time
in which we iterate (repeat the development processes) to create an
increment of the product? This principle says they shouldn’t be longer than a
couple of months. In Scrum, the maximum is one month. We have to talk
about it a lot until the end of this book.

Do you also see the suggestion about a couple of weeks? Many people used to
laugh at it in those days – the idea of having a new increment in only a couple
of weeks. However, now we have projects with even shorter iterations.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum
Foundation

Page 16

Principle 4: Business people and developers must work together daily throughout the
project.

This goes against the idea of separating the business people (customer or
otherwise) from the technical people, which is still a problem in projects. They
sometimes see each other as enemies, which is not the best thing that can
happen in a project.

In addition to that, we can’t adapt if the business people are not available all
the time. Think about continuous analysis of new features and testing of the
completed units. Besides, it’s always more fun to have more people when
celebrating the completion of another iteration!

Principle 5: Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

Soon we’ll discuss more aspects of Adaptive systems. One of them is that we
need to have empowered people in the project level; not just because it’s a
good thing, but mainly because Adaptive lifecycles need it. Maybe you can
think about the reasons for this, until we discuss it in the next sections.

Principle 6: The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

Instead of emails! Note that this is the most exam-friendly principle of all time.

I’ll get back to this in a separate chapter when we talk about osmotic
communication.

Principle 7: Working software is the primary measure of progress.

Most projects measure the wrong things. It’s a fundamental problem because
what you measure is what you get. If you measure how many lines of code are
produced, you will just get more lines of code. If you measure how busy the
developers are, you will get busier developers. If you measure velocity (a
common Agile measure about the speed of development that we will discuss
later), you will get higher velocity (which is not the goal).

So, what should be measured?

The main measure is the amount of value generated. Because that’s difficult
to measure, the next best thing is the working software that creates the
capacity for generating that value.

Principle 8: Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum
Foundation

Page 17

No over-over-time work before releases. It’s about maximizing value in the
long term. It’s not about short-term gains that may lead to a lower production
rate and lower quality.

Principle 9: Continuous attention to technical excellence and good design enhances agility.

There’s a risk of having poor design in Adaptive systems because design is
done gradually instead of upfront. There are certain practices for overcoming
this problem.

Principle 10: Simplicity – the art of maximizing the amount of work not done – is essential.

It’s a very complicated way of saying something simple: that having more
features is not always a good thing.

It’s a good idea to keep the solution simple and have only the really useful
features in it because it saves time and money (which can be used for other
projects) and reduces the maintenance cost.

Principle 11: The best architectures, requirements, and designs emerge from self-organizing
teams.

Self-organization means having empowered people in the project who are
involved in the decisions, and it’s usually a good idea.

Principle 12: At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.

You need to accept that the way you work is not perfect, and you can always
improve it in small steps. Also, don’t look at the way the Agile Manifesto and
Agile Principles are improved; do as they say, not as they do ;)

 OK, we’re done with reviewing the Agile Principles. Don’t forget that these are very
common topics for your exam.

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum
Foundation

Page 18

Practical Considerations about Adaptive Lifecycles
Do you remember how Adaptive lifecycles work? Here’s the picture again, just to make sure
the book will be thick enough:

There are a few things we need to talk about. First, for each iteration, we choose a number
of features, and our goal is to create a piece of working software (increment) by the end of
the iteration that, hopefully, contains all the features. Now, in your opinion, should it be a
fixed-scope iteration or a fixed-duration one?

By the way, I’m using the word “feature” very loosely here.

Fixed-Scope vs. Fixed-Duration Iterations

Theoretically, both of them can work, but in practice, fixed-duration iterations are
significantly superior because if you keep the scope of the iteration fixed, then:

 You will usually need more time to finish the scope, which reduces the amount of
feedback and therefore opportunities for adaptation.

 You may spend too much time on each feature and add too many bells and whistles.
Having a fixed duration continuously pushes you to focus on the most valuable
things first.

So, that’s why almost all Agile methods have fixed-duration iterations, and they usually
insist on respecting these timeboxes. A timebox is a period of time with a maximum (or
fixed) amount of time, and we don’t extend it under any circumstances (if you do it once,
you will do it all the time).

Analyze
Design
Construct
Integrate
Test

Analyze
Design
Construct
Integrate
Test

Analyze
Design
Construct
Integrate
Test

Analyze
Design
Construct
Integrate
Test

Analyze
Design
Construct
Integrate
Test

Analyze
Design
Construct
Integrate
Test

Increment
(product)

Increment
(product)

Increment
(product)

Increment
(product)

Increment
(product)

Increment
(product)

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

Agile Scrum
Foundation

Page 19

Duration of Iterations

So, now that we’ve established that iterations are timeboxed, how long should they be? It
was mentioned in the Agile Principles; do you remember?

The maximum is two months based on the Agile Principles. In Scrum, the maximum is one
month.

This time is enough to develop a few features and show them to the customer and end-
users to generate feedback. We don’t want it to be too long because we won’t have enough
feedback in that case.

Same Duration or Different Durations for Iterations?

In your opinion, is it better to have the same duration for all iterations or keep them
flexible?

Having the same duration is more disciplined, and it’s usually unnecessary to decide about a
new duration all the time.

Scrum requires you to have the same length. This is, however, subject to adaptation. What it
means is that you can start your project with two-week Sprints (yes, Sprint is the Scrum
term for iteration) and, after a while, when you realize that’s not long enough to create
enough features, you can decide to make them three weeks long. This is fine. What’s not
fine in Scrum is to get together before each Sprint and say “OK, how long shall we Sprint this
time?”

Not all methods are the same in this. In DSDM, which is another Agile method, you plan the
duration of the timeboxes (yes, DSDM calls iterations timeboxes) when you are planning
their scope.

What If Some Features Are Not Done?

So, we pick a number of features for the iteration that is timeboxed. What happens if we
can’t finish everything by the end of the iteration?

It’s absolutely fine because our main goal is to create an increment of software that can
generate feedback for our adaptation and, later, generate the most value when it’s put into
production. Our goal is NOT to develop as many features as possible.

Three of the Agile Principles support this claim; can you say which ones?

Answer: 1, 7, 10

Copyright protected. Use is for Single Users only via a VHP Approved License.
For information and printed versions please see www.vanharen.net

	Colophon
	About the Authors
	The Agility Concept
	Project Delivery Method and Lifecycle
	Predictive vs. Adaptive Lifecycles
	Agile vs. Waterfall
	Is Agile New?
	The Agile Manifesto
	Agile Principles
	Practical Considerations about Adaptive Lifecycles
	Fixed-Scope vs. Fixed-Duration Iterations
	Duration of Iterations
	Same Duration or Different Durations for Iterations?
	What If Some Features Are Not Done?
	What Happens Inside the Iterations?
	Empowerment

	Is It Only for IT Projects?
	Is Agile Faster?

	Scrum
	Methodology vs. Framework
	Quick Overview of the Scrum Framework
	Scrum Roles
	Scrum Team
	Role 1: The Product Owner
	Role 2: The Scrum Master
	Role 3: The Development Team
	Other Roles
	Who Is the Project Manager?
	Pigs and Chickens
	Suitable Workspace
	Osmotic Communication
	Virtual Teams

	Scrum Events
	Introduction to Scrum Events
	Timeboxing
	Event 1: The Sprint
	Event 2: Sprint Planning
	Event 3: Daily Scrum
	Event 4: Sprint Review
	Event 5: Sprint Retrospective
	Activity: Product Backlog Refinement
	Slack
	The First Sprint!
	Release Planning
	Agile Testing
	Planning Onion

	Scrum Artifacts
	Artifact 1: Product Backlog
	Product Backlog Items
	Only Functional Features?
	The Two Rules
	Invest on Your Product Backlog Items
	Epics and Themes
	Estimating
	Story Points
	Velocity
	Ideal Hours / Ideal Days
	Velocity vs. Success
	Velocity vs. Velocity
	Planning Poker
	Triangulation
	Triangulation Board
	Affinity Estimation
	Re-estimating

	Ordering the Product Backlog Items
	What’s Value?
	How to Order the Product Backlog
	Value Related Jargon

	Artifact 2: Sprint Backlog
	Unfinished Items at the End of the Sprint
	Done with All Items in the Middle of the Sprint
	Frozen vs. Dynamic
	Unfinished Work vs. Velocity

	Artifact 3: Increment
	Definition of Done
	Definition of Ready
	Monitoring Project Performance
	Monitoring Sprint Progress
	Information Radiators
	Burn-Down Charts
	Burn-Down Bars
	Burn-Up Charts
	Cumulative Flow Diagrams
	Niko-Niko Calendar

	Scaled Scrum
	Roles
	Artifacts
	Events
	Sprint Planning
	Daily Scrums
	Sprint Reviews
	Sprint Retrospective

	Extreme Programming
	01. Pairing
	02. Assignment
	03. Design
	04. Write Test
	05. Code
	06. Refactoring
	07. Integrate
	08. Go Home!
	Daily Standup
	Tracking
	Risk Management
	Spiking

	DSDM
	Project Constraints
	Upfront Planning
	MoSCoW Prioritization
	Exceptions
	Self-Organization
	Contract Types

	Kanban and ScrumBan
	Kanban
	Visualizing
	Limited WIP
	Pull vs. Push

	ScrumBut
	ScrumBan

