
books booksbooks

G
etting Started w

ith ESPH
om

e • K
oen Vervloesem

Koen Vervloesem

Develop your own custom
home automation devicesKoen Vervloesem has been

writing for over 20 years on
Linux, open-source software,
security, home automation, AI,
programming, and the Internet
of Things. He holds a Master’s
degree in Computer Science
Engineering, a Master’s degree
in Philosophy, and an LPIC-3 303
Security certificate. He is a board
member of the Belgian privacy
activist organisation the Ministry
of Privacy.

Espressif ’s ESP8266 and ESP32 microcontrollers have brought DIY home
automation to the masses. However, not everyone is fluent in programming
these microcontrollers with Espressif ’s C/C++ SDK, the Arduino core,
or MicroPython. This is where ESPHome comes into its own: with this
project, you don’t program your microcontroller but configure it.

This book demonstrates how to create your own home automation devices
with ESPHome on an ESP32 microcontroller board. You’ll learn how
to combine all kinds of electronic components and automate complex
behaviours. Your devices can work completely autonomously, and connect
over Wi-Fi to your home automation gateways such as Home Assistant
or MQTT broker.

By the end of this book, you will be able to create your own custom home
automation devices the way you want. Thanks to ESPHome and the
ESP32, this is within everyone’s grasp.

> Set up an ESPHome development environment and create
maintainable configurations

> Use buttons and LEDs
> Sound a buzzer and play melodies
> Read measurements from various types of sensors
> Communicate over a short distance with NFC, infrared light,

and Bluetooth Low Energy
> Show information on various types of displays

Getting Started
with ESPHome
Develop your own custom
home automation devices

Getting Started
with ESPHome

Elektor International Media BV
www.elektor.com

binary_sensor:

 - platform: gp
io

 id: button1

 pin:
 number: GP

IO35

 inverted:
true

 on_click:
 then:
 - switch

.toggle: backlig
ht

 - platform: gp
io

 id: button2

 pin:
 number: GP

IO0

 inverted:
true

 mode: INPU
T_PULLUP

 on_click:
 then:
 - displa

y.page.show_next
: ttgo_tdisplay

 - compon
ent.update: ttgo

_tdisplay

switch:
 - platform: gp

io

 pin: GPIO4

 name: "Backl
ight"

 id: backligh
t

binary_sensor:binary_sensor:binary_sensor:binary_sensor:

 - platform: gp
io - platform: gp
io

 - platform: gp
io - platform: gp
io

 id: button1 id: button1 id: button1 id: button1

 pin: pin: pin: pin:
 number: GP

IO35 number: GP
IO35

 number: GP
IO35 number: GP
IO35

 inverted:
true inverted:
true

 inverted:
true inverted:
true

 on_click: on_click: on_click: on_click:

 then: then: then: then:
 - switch

.toggle: backlig
ht

 - switch
.toggle: backlig

ht
 - switch

.toggle: backlig
ht

 - switch
.toggle: backlig

ht

 - platform: gp
io - platform: gp
io

 - platform: gp
io - platform: gp
io

 id: button2 id: button2 id: button2 id: button2

 pin: pin: pin: pin:
 number: GP

IO0 number: GP
IO0

 number: GP
IO0 number: GP
IO0

 inverted:
true inverted:
true

 inverted:
true inverted:
true

 mode: INPU
T_PULLUP mode: INPU
T_PULLUP

 mode: INPU
T_PULLUP mode: INPU
T_PULLUP

 on_click: on_click: on_click: on_click:

 then: then: then: then:
 - displa

y.page.show_next
: ttgo_tdisplay

 - displa
y.page.show_next

: ttgo_tdisplay

 - displa
y.page.show_next

: ttgo_tdisplay

 - displa
y.page.show_next

: ttgo_tdisplay

 - compon
ent.update: ttgo

_tdisplay

 - compon
ent.update: ttgo

_tdisplay

 - compon
ent.update: ttgo

_tdisplay

 - compon
ent.update: ttgo

_tdisplay

switch:switch:switch:switch:
 - platform: gp

io - platform: gp
io

 - platform: gp
io - platform: gp
io

 pin: GPIO4 pin: GPIO4 pin: GPIO4 pin: GPIO4

 name: "Backl
ight" name: "Backl
ight"

 name: "Backl
ight" name: "Backl
ight"

 id: backligh
t id: backligh
t

 id: backligh
t id: backligh
t

 id: button2

 pin:
 id: button2 id: button2 id: button2 id: button2

 pin: pin: pin:

Getting Started With ESPHome.indd Alle pagina'sGetting Started With ESPHome.indd Alle pagina's 06-05-2021 12:5206-05-2021 12:52

Getting Started with ESPHome

●

an Elektor Publication

Koen Vervloesem

design > share > sell

Elektor is part of EIM, the world's leading source of essential technical information and electronics products for pro
engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops
and delivers high-quality content - via a variety of media channels (e.g., magazines, video, digital media, and social media)
in several languages - relating to electronics design and DIY electronics. www.elektor.com

● This is an Elektor Publication. Elektor is the media brand of

Elektor International Media B.V.

78 York Street

London W1H 1DP, UK

Phone: (+44) (0)20 7692 8344

© Elektor International Media BV 2021

First published in the United Kingdom 2021

● All rights reserved. No part of this book may be reproduced in any material form, including

photocopying, or storing in any medium by electronic means and whether or not transiently or incidentally

to some other use of this publication, without the written permission of the copyright holder except in

accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a

licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1P 9HE.

Applications for the copyright holder's written permission to reproduce any part of this publication should be

addressed to the publishers. The publishers have used their best efforts in ensuring the correctness of the

information contained in this book. They do not assume, and hereby disclaim, any liability to any party for

any loss or damage caused by errors or omissions in this book, whether such errors or omissions result from

negligence, accident or any other cause.

● British Library Cataloguing in Publication Data

Catalogue record for this book is available from the British Library

● ISBN: 978-3-89576-441-7

● EISBN: 978-3-89576-442-4

Prepress production: DMC ¦ daverid.com

Printed in the Netherlands by Ipskamp

design > share > sell

● Preface

● 5

● Preface

Espressif's ESP8266 and ESP32 microcontrollers have become popular for do-it-yourself
home automation enthusiasts. If you want to add Wi-Fi connectivity to electronics projects,
both microcontrollers are the first that come to mind. They have brought do-it-yourself
home automation to the masses.

Not everyone can program these microcontrollers using Espressif's C/C++ SDK, Arduino
core, or MicroPython. This is where ESPHome comes in: with this project you don't program
your microcontroller, but configure it. Under the hood, ESPHome translates your configura-
tion to C++ code to run on the microcontroller.

In this book, I'll show you how to create your own home automation devices with ESPHome
on an ESP32 microcontroller. You'll learn how to use buttons, LEDs, how to sound a buzzer
and play melodies, and how to measure various types of sensors. You'll also learn how to
communicate over a short distance with NFC, infrared and Bluetooth Low Energy, as well
as how to show information on various types of displays.

Most of all, you'll learn how to combine these components and automate everything they
do. This way you create completely autonomous home automation devices that you can
connect over Wi-Fi to your home automation gateway such as Home Assistant or an MQTT
broker.

No home is the same, so no home automation device should be the same. At the end of this
book, you'll be able to create your own custom home automation devices the way you like
them. Thanks to ESPHome and the ESP32, this is within everyone's grasp.

Koen Vervloesem, 2021

Getting Started with ESPHome

● 6

Table of Contents

● Preface . 5

Chapter 1 ● Introduction . 9

1.1 ● Configuring instead of programming . 9
1.2 ● The advantages of ESPHome . 10
1.3 ● Requirements . . 11

1.3.1 ● ESP8266 or ESP32 device . 11

1.3.2 ● Electronic components . 13

1.3.3 ● Home automation system . 14

1.3.4 ● "Development" environment . 15

1.4 How to use this book . 16
1.5 Summary and further exploration . 18

Chapter 2 ● Preparing your ESPHome environment . 19

2.1 ● Installing ESPHome . 19
2.2 ● Creating your first ESPHome configuration . 20
2.3 ● Building and flashing your firmware . 23
2.4 ● Adding your ESPHome device to your home automation gateway 24

2.4.1 ● Adding your ESPHome device to Home Assistant 24

2.4.2 ● Using your ESPHome device with MQTT . 25

2.5 ● Over-the-air updates . 27
2.6 ● Logging . . 28
2.7 ● The ESPHome dashboard . 30

2.7.1 ● Installing the dashboard as a Home Assistant add-on 30

2.7.2 ● Running the standalone dashboard . 30

2.7.3 ● Running the dashboard in a Docker container . . 31

2.7.4 ● Using the ESPHome dashboard . 32

2.8 ● Making your ESPHome configurations more maintainable 35

2.8.1 ● Substitutions . 35

2.8.2 ● Secrets . 37

2.8.3 ● Includes . . 39

2.8.4 ● Packages . 41

2.9 ● Summary and further exploration . 43

Chapter 3 ● Simple digital input and output . . 44

3.1 ● Digital input . . 44

3.1.1 ● Built-in buttons . 44

● Table of Contents

● 7

3.1.2 ● External buttons with pull-up or pull-down resistors 45

3.1.3 ● Debouncing buttons . 48

3.1.4 ● Motion sensors . 49

3.2 ● Digital output . 52

3.2.1 ● Turning on an LED . 52

3.2.2 ● Switching other components with a GPIO pin . 54

3.2.3 ● Setting the brightness of an LED with PWM . 54

3.3 ● Summary and further exploration . 56

Chapter 4 ● Automations . 57

4.1 ● A motion alarm . 58
4.2 ● Playing melodies on a buzzer . 61
4.3 ● Defining a list of actions in a script . 62
4.4 ● Execute actions and scripts conditionally . . 64
4.5 ● Time-based automations . 67
4.6 ● Reacting to sunrise and sunset . 68
4.7 ● Adding arbitrary C++ code with lambdas . 72
4.8 ● Summary and further exploration . 74

Chapter 5 ● Sensors . 75

5.1 ● Analog sensors . 75

5.1.1 ● Ambient light sensor TEMT6000 . 77

5.1.2 ● Resistive soil moisture sensor . 79

5.1.3 ● NTC thermistor . 84

5.2 ● 1-Wire sensors . 87
5.3 ● I²C sensors . 90
5.4 ● An ultrasonic distance sensor . 92
5.5 ● Summary and further exploration . 95

Chapter 6 ● Remote communication . 96

6.1 ● Scanning NFC tags . 96
6.2 ● Infrared communication . 101

6.2.1 ● Infrared receiver . 101

6.2.2 ● Infrared transmitter . 105

6.3 ● Getting information from Bluetooth Low Energy devices 108

6.3.1 ● Tracking the presence of BLE devices . 108

6.3.2 ● Investigating BLE advertisements . . 109

6.3.3 ● Reading BLE service data . 111

6.3.4 ● Reading BLE manufacturer data . 112

6.3.5 ● Using supported BLE sensors . . 114

Getting Started with ESPHome

● 8

6.3.6 ● Setting up ESP32 devices as proximity beacons 115

6.4 ● Summary and further exploration . 116

Chapter 7 ● Displays . 118

7.1 ● NeoPixels . 118
7.2 ● Showing the time on a 4-digit display . . 121
7.3 ● Showing an NFC card's status on a matrix display . 123
7.4 ● Showing sensor measurements on an OLED display 128
7.5 ● Creating an MQTT dashboard with the TTGO display 131
7.6 ● Showing more with pages . 135
7.7 ● Summary and further exploration . 139

Chapter 8 ● Conclusion . 141

● Appendix . . 143

9.1 ● Pin-out of the TTGO T-Display ESP32 . 143
9.2 ● Common issues with the choice of pins . . 143

9.2.1 ● GPIO 34–39 are input-only . 144

9.2.2 ● Avoid GPIO 0, 2, 12, and 15 during flashing . . 144

9.3 ● Upgrading ESPHome . 144

9.3.1 ● Pip . 144

9.3.2 ● Home Assistant add-on . 144

9.3.3 ● Docker . 144

9.4 ● Using beta and development versions . . 145

9.4.1 ● Pip . 145

9.4.2 ● Home Assistant add-on . 145

9.4.3 ● Docker . 146

9.5 ● Adding custom integrations . 146

9.5.1 ● Finding a library . 146

9.5.2 ● Integrating the library . 147

9.5.3 ● Using the custom sensor . 149

9.6 ● Bill of materials . 150

● Index . 151

Chapter 1 ● Introduction

● 9

Chapter 1 ● Introduction

In this book, you'll learn how to create:

•	 A motion sensor that sounds an alarm on detecting movement.
•	 A night light that lights up your hallway at night.
•	 A soil moisture sensor that warns you when your plants lack water.
•	 An infrared transmitter that can power off or mute your TV.
•	 A receiver for Bluetooth Low Energy sensor measurements.
•	 A network clock that always shows the correct time.
•	 An NFC card scanner that identifies you.
•	 A distance sensor that shows the distance to an object or water level in a tank on an

LED bar.
•	 A dashboard showing measurements from other sensors in your home automation

system.

Before you start working with ESPHome, it's important to take a step back and have a look at
what ESPHome is and why you should use it. This chapter also lists some requirements: the
hardware you need to install ESPHome on, and the software to work with ESPHome. Before
you continue with the rest of the book, you should make sure that these requirements are
met.

1.1 ● Configuring instead of programming

The ESP8266 and its successor, the ESP32, are a series of low-cost microcontrollers with
integrated Wi-Fi (for both series) and Bluetooth (for the ESP32), produced by Espressif
Systems. The maker community quickly adopted these microcontrollers for tasks where an
Arduino didn't suffice.1

You can program the ESP8266 and ESP32 using Espressif's SDK, Arduino core, or
MicroPython. Arduino and MicroPython lower the bar significantly, but it still takes some
programming experience to build solutions with these microcontrollers.

One of the domains in which the ESP8266 and ESP32 have become popular is in the DIY
(do-it-yourself) home automation scene. You just have to connect a sensor, switch, LED,
or display to a microcontroller board, program it, and there you have it: your customised
home automation device.

However, "programming it" isn't that straightforward as it sounds. For instance, if you're
using the Arduino environment, which has a lot of easy-to-use libraries, you still have to
know your way around C++.

Luckily there are a couple of projects to make it easier to create firmware for ESP8266 or

1	 Basic Arduino models don't have network connectivity, which limits their use for
home automation and IoT applications.

Getting Started with ESPHome

● 10

ESP32 devices for home automation. One of these is ESPHome.2

On its homepage, the ESPHome developers describe it as:

'ESPHome is a system to control your ESP8266/ESP32 by simple yet powerful configuration
files and control them remotely through Home Automation systems.'

The fundamental idea of ESPHome is that you don't program your ESP8266 or ESP32
device, but configure it. Often you only have to configure which pins you have connected
to a component, such as a sensor. You don't have to initialize the sensor, read its values in
a loop, and process them.

Configuration is a completely different mindset than programming. It lowers the bar even
more. With ESPHome, everyone can make home automation devices.3

Essentially ESPHome creates C++ code based on your configuration. The process looks
like this:

So when you write a YAML file with your device's configuration, ESPHome generates C++
code from it. More specifically, ESPHome creates a PlatformIO project using the Arduino
framework. PlatformIO then builds the C++ code, and esptool uploads the resulting
firmware to your device.

You don't have to know anything about what's happening under the hood. You just have
to write the configuration of your device in a YAML file and memorise a small number of
commands to let ESPHome do the rest.

1.2 ● The advantages of ESPHome

Why use ESPHome? The first reason is clear from the project's description: because you
don't need to be able to program. Even if you're a programmer, ESPHome offers many
advantages:

Works completely locally

Many commercial Wi-Fi-based home automation devices need a connection to a cloud service
of the manufacturer. In contrast, ESPHome devices work locally and can communicate
with a local home automation system such as Home Assistant or an MQTT-based home
automation system.

2	 Some well-known alternatives to ESPHome are Tasmota, ESPEasy and Espurna.
3	 Note that you can still add your own C++ code to program ESPHome devices if you
like.

Figure 1.1 ESPhome turns YAML code into firmware on your device

Chapter 1 ● Introduction

● 11

Offers on-device automations

Many home automation systems use a central gateway that contains all the logic, with
automations like "if the sun goes down, close the blinds." In contrast, ESPHome offers
powerful on-device automations. Your devices can work independently from a home
automation gateway, so they keep working if they lose Wi-Fi access or if your home
automation gateway crashes.

Offers over-the-air updates

ESPHome includes out-of-the-box over-the-air (OTA) update functionality. This makes it
easy to centrally manage your ESPHome devices and update the firmware. This means
you don't have to go around your house with your laptop to connect a serial cable to each
device and flash the firmware.

Supports a lot of components

ESPHome supports many components out-of-the-box: several types of sensors, switches,
and displays (even e-paper displays) are available with just a couple of configuration lines.
The list of supported components is growing with every release.

Has extensive documentation

The developers have documented every component in ESPHome, and this documentation
(found on https://esphome.io) is quite good.

Is customisable

Although you create ESPHome firmware by writing a configuration file, ESPHome doesn't
hide anything from you. It's still possible to add custom components that you write in C++.
You can even look at the C++ code that ESPHome generates and change it.

1.3 ● Requirements

To make the most of ESPHome, you need a few things:

•	 an ESP8266 or ESP32 device
•	 some electronic components
•	 Home Assistant or an MQTT-based home automation system
•	 a "development" environment

1.3.1 ● ESP8266 or ESP32 device

ESPHome creates custom firmware for the ESP8266 and ESP32 microcontrollers, so you
need one of these. There are many types of boards for both microcontrollers, varying in the
amount of flash memory, RAM, and available pins. Some of them even come with extras

https://esphome.io

Getting Started with ESPHome

● 12

such as a built-in display (OLED, TFT, or e-paper), battery, or camera.

ESPHome doesn't support all features of all boards out-of-the-box. Technically, all
ESP8266/ESP32 devices should be able to run ESPHome. Some features just aren't
supported yet.

Your first choice is between the ESP8266 or ESP32. If you're buying a device at present, the
choice is simple: the ESP32. It is much more capable than its predecessor and has a faster
processor, more memory, more peripherals, and adds Bluetooth.

Note:

The examples in this book use ESP32. If you still have some ESP8266 boards lying around,
by all means, use them in your ESPHome projects if they're suitable for the hardware.

Then comes the choice of board. Espressif has some development boards. Many other
companies are making them too. There are even complete kits such as the M5Stack
series (https://m5stack.com). These are ESP32 development boards ready to use in your
living room in a case with a display, buttons, MicroSD card slot, and speaker.

Other interesting devices to run ESPHome on are devices from manufacturers such as
Sonoff (https://sonoff.tech) and Shelly (https://shelly.cloud). These come with firmware
that works with the manufacturer's cloud services. You can however replace the firmware
with ESPHome. This unlocks the full potential of the devices and lets you use them in your
local home automation system without any link to a cloud system.

All examples in this book use the TTGO T-Display ESP32 made by LilyGO. You should be
able to follow along with most of the examples using any ESP32 or ESP8266 device. The
built-in display is only used in the last chapter.

Figure 1.2 The TTGO T-Display ESP32 by LilyGO is an ESP32 board with an integrated 1.14 inch TFT display

https://m5stack.com
https://sonoff.tech
https://shelly.cloud

Chapter 1 ● Introduction

● 13

Warning:

If you try the examples from this book with another board, make sure you know the pin-out
of your device and adapt the pin numbers when required in your ESPHome configurations.

1.3.2 ● Electronic components

The electronic components you need depend on your case for usage. The examples in this
book use a small collection of inexpensive, widely available components:

•	 PN532 NFC/RFID reader
•	 BME280 3.3 V temperature and humidity sensor
•	 HC-SR501 PIR sensor
•	 DS18B20 temperature sensor
•	 passive buzzer
•	 TEMT6000 ambient light sensor
•	 MAX7219 LED dot matrix 8x8
•	 resistive soil moisture sensor
•	 NTC MF5A-3 10K thermistor
•	 TM1637 LED display
•	 WS2812 stick with 8 RGB LEDs
•	 0.96 inch SSD1306 I²C OLED display
•	 HC-SR04 ultrasonic distance sensor
•	 TSOP38238 infrared receiver
•	 940 nm infrared LED
•	 BC547 transistor

Added to this, you need some general components which you probably already have if you
have completed some electronic projects in the past:

•	 830-point breadboard
•	 16x m/m jumper wires
•	 6x f/m jumper wires
•	 USB-C to USB-A cable
•	 Breadboard push-button
•	 Resistors 100 Ω, 220 Ω, 510 Ω, 1 kΩ, 4.7 kΩ, 5.1 kΩ, 10 kΩ
•	 Red LED (633 nm)
•	 DIP switch
•	 1 µF 6.3 V electrolytic capacitor

ESPHome supports many more components, including some costly ones. Have a look at the
project's homepage for a full list.

Getting Started with ESPHome

● 14

1.3.3 ● Home automation system

You can use ESPHome to create a fully autonomous microcontroller project - for example, a
plant monitor that turns on an LED if the plant's soil is too dry. However, if you don't publish
the plant's status over the network, this would be a waste of the ESP32's capabilities. The
main usage cases of ESPHome are:

•	 To send a device's sensor measurements to a home automation gateway.
•	 To remotely control a device's lights or switches from a home automation gateway.

ESPHome supports two ways of communication between your device and the home
automation gateway:

Native API

The ESPHome native API is a highly optimised network protocol using Google's protocol
buffers. It's meant to be used with Home Assistant (https://www.home-assistant.io) - an
open-source home automation system.

MQTT

MQTT (Message Queuing Telemetry Transport) is an OASIS standard messaging protocol
designed with a lightweight publish/subscribe approach for messages. All your ESPHome
devices then communicate with an MQTT broker such as Eclipse Mosquitto (https://
mosquitto.org).

From the beginning (when it was still called esphomeyaml), the ESPHome project has been
tightly integrated with Home Assistant, so the ESPHome developers prefer the native API.
However, MQTT is fully supported, allowing your devices to communicate with many other
home automation gateways, as MQTT is a popular standard.

I don't want to force you to use a specific home automation gateway to use the examples
in this book, as I'm a big believer in choice. Therefore, the examples in this book use MQTT,
but they're also usable if you choose the native API. The differences in configuration are
minimal.

Note:

As this book focuses on the ESPHome devices and not on the gateway, it doesn't cover
the installation and configuration of Home Assistant or another home automation gateway.
You can find installation instructions on Home Assistant's home page (https://www.home-
assistant.io/installation/). If you don't want to tie yourself to Home Assistant, consult the
book 'Control Your Home with Raspberry Pi' (https://www.elektor.com/control-your-home-
with-raspberry-pi) published by Elektor. It covers the installation of the MQTT broker
Mosquitto and how to integrate it with various home automation services, including Home
Assistant in detail.

https://www.home-assistant.io
https://mosquitto.org
https://mosquitto.org
https://www.home-assistant.io/installation/
https://www.home-assistant.io/installation/
https://www.elektor.com/control-your-home-with-raspberry-pi
https://www.elektor.com/control-your-home-with-raspberry-pi

Chapter 1 ● Introduction

● 15

1.3.4 ● "Development" environment

With ESPHome you don't program your devices but configure them. However, you still need
something that looks like a "development" environment. When your device configurations
are simple, you could do without, but the more complex they become, you'll need all the
help you can get.

This doesn't mean you have to install a full-blown Integrated Development Environment
(IDE). You should only need a couple of programs:

An editor

You could make do with a simple text editor such as Notepad (Windows), TextEdit (macOS),
or the default text editor on your Linux distribution. However, having an editor with syntax
highlighting for YAML files is easier. Some examples are Notepad++ and Sublime Text. If
you're a command-line user on Linux, both vim and Emacs work fine. Use whatever you
like, because your editor is an important tool in this book.

A YAML linter

A linter is a program that checks your file for the correct syntax. An editor with syntax
highlighting has this linter built-in, but you can also run this standalone. A good YAML linter
is the Python program yamllint (https://yamllint.readthedocs.io). Not only does it check
for syntax validity, but also weird things like key repetitions, as well as cosmetic problems
such as line length, trailing spaces, and inconsistent indentation. ESPHome includes its
own linter, specifically targeted at finding errors in ESPHome configurations. Both linters
are complementary.

If you're used to developing in an IDE, an interesting alternative is the ESPHome plugin
for Visual Studio Code.(https://marketplace.visualstudio.com/items?itemName=ESPHome.
esphome-vscode). This plugin provides validation and completion of what you type in an
ESPHome YAML file. It also shows tooltips with help when you hover over keywords in the
configuration.

https://yamllint.readthedocs.io
https://marketplace.visualstudio.com/items?itemName=ESPHome.esphome-vscode
https://marketplace.visualstudio.com/items?itemName=ESPHome.esphome-vscode

Getting Started with ESPHome

● 16

The next chapter shows you how to install ESPHome standalone. You can also install
ESPHome as a dashboard (in a Docker container or as a Home Assistant add-on). The latter
also lets you edit your ESPHome configuration files from a web interface. Because I don't
want to tie you to Docker or Home Assistant, this book uses the standalone installation.
Feel free to use the other methods.

1.4 How to use this book

This book describes a basic set of electronic components you can use to create your own
home automation devices with ESPHome. This is by no means meant to be complete. I
selected these components to be able to explain as many features of ESPHome as possible
with a small set of cheap components.

After completing this book, you will have enough experience with ESPHome to start adding

Figure 1.3 The ESPHome plugin for Visual Studio Code has some useful features like tooltips and validation
and completion of the YAML code.

Chapter 1 ● Introduction

● 17

other electronic components. You should be able to create your own personal devices that
make your home more comfortable.

Some basic electronic knowledge is recommended to follow the examples in this book.
But even without this knowledge, they aren't that difficult, and I've tried to explain most
non-trivial electronics. The small electronic circuits in this book don't work with mains
electricity and are safe to use. That said, if it's all new to you, I recommend you to buy a
basic electronics book.

Here's a short overview of what this book covers:

Chapter 1: Introduction

An introduction to what ESPHome is, why you use it, and what you need to create your own
home automation devices.

Chapter 2: Preparing your ESPHome environment

The preparation for this book, where you install ESPHome and its dashboard, flash your
first firmware, and learn about over-the-air updates and logs. This chapter also gives some
best practices to keep your ESPHome configurations maintainable.

Chapter 3: Simple digital input and output

Your first hardware project with ESPHome, where you learn how to use the power of digital
input and output and connect buttons, motion sensors, and LEDs.

Chapter 4: Automations

Automations linking various ESPHome components to each other, which makes your ESP32
device able to do stuff without depending on a home automation gateway.

Chapter 5: Sensors

Various types of sensors, including analog, 1-Wire, I²C, and ultrasonic distance.

Chapter 6: Remote communication

Communication methods over a distance other than Wi-Fi, including NFC, infrared light,
and Bluetooth Low Energy.

Chapter 7: Displays

Various types of displays, from simple RGB LED sticks, 4-digit displays to a matrix, OLED,
or the TTGO T-Display's built-in display.

Getting Started with ESPHome

● 18

Chapter 8: Conclusion

A wrap-up of this book, with some references to more information if you want to improve
your ESPHome skills.

Appendix

Specialised tips that could come in handy in various situations.

Note:

All code examples from this book are published on https://github.com/koenvervloesem/
Getting-Started-with-ESPHome. Read the instructions in the GitHub repository for more
information on how to download them. The repository also lists errors that have been found
in the book since its publication, as well as information about changes in ESPHome that
impact the examples in this book.

1.5 Summary and further exploration

In this introductory chapter, I merely set the scene of the book so we're on the same page.
You've learned the difference between configuring and programming, and by now you know
the advantages of ESPHome as a platform to develop your own home automation devices.
You've also seen what you need to make the most of this book. These requirements are
quite flexible. You're free to change the components listed in the chapter, even the ESP32
board, as long as you know what you're doing.

If this is your first time working with ESPHome, ESP8266, ESP32, or a home automation
gateway, I recommend sticking as closely as possible to the book's recommendations
initially. I hope this book will give you the confidence to explore different paths, and the
inspiration to create original home automation devices that no one has developed before.

https://github.com/koenvervloesem/Getting-Started-with-ESPHome
https://github.com/koenvervloesem/Getting-Started-with-ESPHome

● Appendix

● 151

● Index

Symbols

1-Wire bus 87

4-digit display 8, 118, 121, 139

433 MHz 116

.gitignore 38

β constant 85, 87

A

ADC 76, 77, 79, 87

air quality sensor 133, 141

AM312 49, 51

ambient light sensor 13, 75, 77, 78

analog sensors 7, 75

animations 140

Arduino 5, 9, 10, 146, 147

assigned numbers 111

attenuation 78, 79, 81, 82, 83, 86, 87

automations 7, 11, 48, 56, 66, 74, 96, 120

B

base 106, 107

BC547 13, 96, 106, 107

Beacon Scanner 115, 116

binary sensor 22, 36, 44, 51, 58, 60, 72, 100, 104, 108

bindkey 115

BLE advertisement 111

BLE client 109

BLE manufacturer data 7, 112, 114

BLE service data 7, 111

Bluetooth 5, 9, 17, 96, 108, 116, 132

Bluetooth specifications 111

BME280 13, 75, 91, 118, 128

brightness 7, 54, 56

built-in buttons 44, 45, 56

buzzer 5, 13, 44, 56, 60, 61, 96, 98, 100

C

C++ 5, 9, 11, 23, 72, 79, 83, 148

calibration 81, 86, 87

captive portal 21, 22

Getting Started with ESPHome

● 152

clock 9, 90, 97, 121, 136, 139

collector 106, 107

contactless button 79

CS pin 100, 126, 133, 137

current-limiting resistor 52, 106, 107

custom integrations 8, 143, 146

D

Dallas Semiconductor 87

dashboard 6, 16, 25, 30, 39, 43, 57, 87, 131, 138, 144,
debouncing 7, 48

deep sleep 142

delay 64, 66, 67, 72, 126, 128

development environment 15

development versions 8, 143, 145, 146

Discord 142

Docker Compose 31, 43, 145

DS18B20 13, 75, 87, 88, 90

E

Echo pin 93, 94

editor 38

elevation 70

emitter 106, 107

e-paper 11, 12, 140

ESP32 5, 34, 40, 52, 62, 74, 79, 84, 90, 96, 106, 116, 132, 141, 144, 147

ESP8266 5, 9, 18, 24, 132, 141

external buttons 7, 45

F

fastled_clockless 120

flashing 6, 8, 23, 144

fonts 130, 132, 136, 138

forum 142

forward voltage 52, 106

full-duplex communication 97

G

globals 126

glyphs 132, 133, 136, 138

GPIO 7, 22, 23, 49, 55, 107, 138, 144

GPS 67

● Appendix

● 153

H

HC-SR04 13, 75, 93, 94, 118, 119

HC-SR501 13, 51

Home Assistant 5, 16, 19, 38, 43, 51, 73, 79, 131, 146, 150

home automation gateway 5, 6, 11, 14, 15, 17, 18, 24, 25, 57, 96

I

I²C 7, 13, 17, 29, 75, 90, 121, 128, 148,
iBeacon 115, 116

infrared receiver 13, 96, 103, 116

infrared transmitter 9, 101, 105, 106

Inkplate 140

L

lambda 72, 83, 95, 110, 120, 126, 149

latitude and longitude 69

LEDC 55, 56, 59, 60, 61

LED display 13

LED dot matrix 13

LilyGO 12, 47, 143

logging 21, 22, 28, 32

M

M5Stack 12, 138, 141, 146

MAC address 108, 109, 110, 112, 113

maintainable configurations 43

MAX7219 13, 118, 121, 123, 125, 128

mDNS 24, 27, 28, 31

melodies 5, 7, 56, 61, 62

MicroPython 5, 9
MISO pin 97, 99, 125

MOSI pin 97, 99, 125

Mosquitto 14, 15, 26

motion sensor 9, 57

MQTT 5, 55, 101, 107, 128, 131, 150

MQTT broker 5, 14, 15, 19, 26, 27, 29, 36, 37, 39, 43, 57, 132

MQTT discovery 26, 27

MQTT Explorer 26

mqtt_subscribe 132, 133, 135

Getting Started with ESPHome

● 154

N

native API 14

NDEF 116

NeoPixels 8, 118

Nextion 140

NFC 5, 7, 8, 9, 13, 17, 95, 101, 116, 118, 123

nRF Connect 109, 110

NTC thermistor 7, 84, 87

O

OLED display 8, 13, 118, 128, 129, 131

OTA 21, 22, 27, 38, 39

P

packages 19, 20, 31, 35, 41, 42, 43

parasite power mode 88

parking system 93

Pillow 131, 134

pin-out 13, 22, 24, 45, 76, 131, 134, 143, 144

pip 19, 20, 144, 145

PIR sensor 13, 44, 49, 50, 51, 60, 61, 70, 71

PlatformIO 10, 20, 23, 146

PN532 13, 96, 100, 116, 118, 123, 128

printf 130, 131, 133, 134, 137, 138

pull-down resistor 46, 47, 48, 60, 144

pull-up resistor 46, 47, 48, 89, 90

push-button 13, 44, 46, 51, 58

PWM 7, 54, 55, 56, 59, 60

Python 15, 19, 20, 30, 31, 131, 134

R

rectangle 133, 134, 137, 138

reference resistance 85, 87

reference temperature 85, 87

relay 54, 56, 96

remote communication 7, 17, 96

remote receiver 104, 105

remote transmitter 107

resistance sensor 87

RGB LED 17, 103, 139

rtttl 61, 62, 100, 101

RuuviTag 113, 114

● Appendix

● 155

S

SCL pin 90, 91, 92, 129, 150

SCLK pin 97

SDA pin 90, 91, 92, 129

secrets 35, 37, 38, 39, 40, 41, 43

sensors 5, 25, 37, 42, 84, 86, 91, 116, 128, 135, 138, 149

serial port 24, 28

Shelly 12, 23, 24

SNTP 67

soil moisture sensor 7, 9, 13, 75, 79, 80, 81, 83, 84

Sonoff 12, 23

SPI 29, 95, 100, 123, 124, 128, 131, 134, 139, 142

SSD1306 13, 118, 128, 129, 130

static 122, 123

strftime 73, 122, 123, 138

substitutions 6, 35

sun 11, 68, 69, 70, 71, 72, 74

sunrise and sunset 7, 68, 69

T

template platform 73

TEMT6000 7, 13, 75, 77, 79

text sensor 73, 112, 113

TLS 26

TM1637 13, 118, 121, 122

toggle 48, 67, 105, 136

transistor 13, 54, 56, 96, 106

Trig pin 93

TSOP38238 13, 96, 101, 102, 103

TTGO T-Display 8, 12, 23, 45, 47, 76, 99, 131, 143

TV remote 101, 103, 105, 116

Two-Wire 90

U

UART 24, 29, 95

ultrasonic distance sensor 7, 13, 75, 92, 93, 94, 95, 118

upgrading 8, 143, 144

UUID 109, 111, 112, 113, 115

Getting Started with ESPHome

● 156

V

variable resistance 75, 76

Visual Studio Code 15, 16

voltage divider 75, 79, 84, 87, 93, 94

W

Waveshare 140

webserver 142

Wi-Fi 5, 17, 20, 27, 33, 37, 57, 115, 132

wizard 20, 21, 22, 24, 25, 27, 28, 32, 33

WS2812 13, 118, 119, 120

X

Xiaomi 114, 115

Y

YAML 10, 15, 37, 39, 60, 133, 141, 149

yamllint 15

YAML linter 15

books booksbooks

G
etting Started w

ith ESPH
om

e • K
oen Vervloesem

Koen Vervloesem

Develop your own custom
home automation devicesKoen Vervloesem has been

writing for over 20 years on
Linux, open-source software,
security, home automation, AI,
programming, and the Internet
of Things. He holds a Master’s
degree in Computer Science
Engineering, a Master’s degree
in Philosophy, and an LPIC-3 303
Security certificate. He is a board
member of the Belgian privacy
activist organisation the Ministry
of Privacy.

Espressif ’s ESP8266 and ESP32 microcontrollers have brought DIY home
automation to the masses. However, not everyone is fluent in programming
these microcontrollers with Espressif ’s C/C++ SDK, the Arduino core,
or MicroPython. This is where ESPHome comes into its own: with this
project, you don’t program your microcontroller but configure it.

This book demonstrates how to create your own home automation devices
with ESPHome on an ESP32 microcontroller board. You’ll learn how
to combine all kinds of electronic components and automate complex
behaviours. Your devices can work completely autonomously, and connect
over Wi-Fi to your home automation gateways such as Home Assistant
or MQTT broker.

By the end of this book, you will be able to create your own custom home
automation devices the way you want. Thanks to ESPHome and the
ESP32, this is within everyone’s grasp.

> Set up an ESPHome development environment and create
maintainable configurations

> Use buttons and LEDs
> Sound a buzzer and play melodies
> Read measurements from various types of sensors
> Communicate over a short distance with NFC, infrared light,

and Bluetooth Low Energy
> Show information on various types of displays

Getting Started
with ESPHome
Develop your own custom
home automation devices

Getting Started
with ESPHome

Elektor International Media BV
www.elektor.com

binary_sensor:

 - platform: gp
io

 id: button1

 pin:
 number: GP

IO35

 inverted:
true

 on_click:
 then:
 - switch

.toggle: backlig
ht

 - platform: gp
io

 id: button2

 pin:
 number: GP

IO0

 inverted:
true

 mode: INPU
T_PULLUP

 on_click:
 then:
 - displa

y.page.show_next
: ttgo_tdisplay

 - compon
ent.update: ttgo

_tdisplay

switch:
 - platform: gp

io

 pin: GPIO4

 name: "Backl
ight"

 id: backligh
t

binary_sensor:binary_sensor:binary_sensor:binary_sensor:

 - platform: gp
io - platform: gp
io

 - platform: gp
io - platform: gp
io

 id: button1 id: button1 id: button1 id: button1

 pin: pin: pin: pin:
 number: GP

IO35 number: GP
IO35

 number: GP
IO35 number: GP
IO35

 inverted:
true inverted:
true

 inverted:
true inverted:
true

 on_click: on_click: on_click: on_click:

 then: then: then: then:
 - switch

.toggle: backlig
ht

 - switch
.toggle: backlig

ht
 - switch

.toggle: backlig
ht

 - switch
.toggle: backlig

ht

 - platform: gp
io - platform: gp
io

 - platform: gp
io - platform: gp
io

 id: button2 id: button2 id: button2 id: button2

 pin: pin: pin: pin:
 number: GP

IO0 number: GP
IO0

 number: GP
IO0 number: GP
IO0

 inverted:
true inverted:
true

 inverted:
true inverted:
true

 mode: INPU
T_PULLUP mode: INPU
T_PULLUP

 mode: INPU
T_PULLUP mode: INPU
T_PULLUP

 on_click: on_click: on_click: on_click:

 then: then: then: then:
 - displa

y.page.show_next
: ttgo_tdisplay

 - displa
y.page.show_next

: ttgo_tdisplay

 - displa
y.page.show_next

: ttgo_tdisplay

 - displa
y.page.show_next

: ttgo_tdisplay

 - compon
ent.update: ttgo

_tdisplay

 - compon
ent.update: ttgo

_tdisplay

 - compon
ent.update: ttgo

_tdisplay

 - compon
ent.update: ttgo

_tdisplay

switch:switch:switch:switch:
 - platform: gp

io - platform: gp
io

 - platform: gp
io - platform: gp
io

 pin: GPIO4 pin: GPIO4 pin: GPIO4 pin: GPIO4

 name: "Backl
ight" name: "Backl
ight"

 name: "Backl
ight" name: "Backl
ight"

 id: backligh
t id: backligh
t

 id: backligh
t id: backligh
t

 id: button2

 pin:
 id: button2 id: button2 id: button2 id: button2

 pin: pin: pin:

Getting Started With ESPHome.indd Alle pagina'sGetting Started With ESPHome.indd Alle pagina's 06-05-2021 12:5206-05-2021 12:52

