C Programming on Raspberry Pi Develop innovative hardware-based projects in C Dogan Ibrahim ### C Programming on Raspberry Pi Dogan Ibrahim This is an Elektor Publication. Elektor is the media brand of Elektor International Media B.V. 78 York Street London W1H 1DP, UK Phone: (+44) (0)20 7692 8344 © Elektor International Media BV 2021 First published in the United Kingdom 2021 - All rights reserved. No part of this book may be reproduced in any material form, including photocopying, or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication, without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder's written permission to reproduce any part of this publication should be addressed to the publishers. The publishers have used their best efforts in ensuring the correctness of the information contained in this book. They do not assume, and hereby disclaim, any liability to any party for any loss or damage caused by errors or omissions in this book, whether such errors or omissions result from negligence, accident or any other cause. - British Library Cataloguing in Publication Data Catalogue record for this book is available from the British Library ISBN: 978-3-89576-431-8 EISBN: 978-3-89576-432-5 EPUB: 978-3-89576-433-2 Prepress production: DMC ¦ daverid.com Printed in the Netherlands by Wilco Elektor is part of EIM, the world's leading source of essential technical information and electronics products for pro engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops and delivers high-quality content - via a variety of media channels (e.g., magazines, video, digital media, and social media) in several languages - relating to electronics design and DIY electronics. www.elektor.com | To my wife Nadire, my daughter Alev, and my son Ahmet, for their love and wisdom. | | | | | |-----------------------------------------------------------------------------------|----------------------|--------------------------|---------------------------|---------------| | | To my wife Nadire, m | ny daughter Alev, and my | son Ahmet, for their love | e and wisdom. | | | | · , | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ### Preface The Raspberry Pi 4 is the latest credit-card sized computer that can be used in many applications, such as audiovisual media centers, desktop computers, industrial control, robotics, and many more domestic and commercial applications. In addition to the many features found in other versions of Raspberry Pi, The Pi 4 also offers Wi-Fi and Bluetooth, making it highly desirable in remote and internet-based control and monitoring applications. The Raspberry Pi has traditionally been programmed using Python. Although Python is a very powerful language, many programmers may not be familiar with using it. The C language is probably the most commonly used programming languages. All embedded microcontrollers can be programmed using the C language these days. The C language is taught in all technical colleges and universities - almost all engineering students are familiar with the use of this language in their projects. This book is about using C with Raspberry Pi to develop various hardware-based projects. Two of the most popular C libraries, wiringPi and pigpio are used. The book starts with an introduction to the C language and most students and newcomers will find this chapter invaluable. Many projects are provided in the book, including using Wi-Fi and Bluetooth to establish communication with smartphones. The book includes many sensors and hardware-based projects. Both wiringPi and pigpio libraries are used in all projects. Complete program listings are given with full explanations. All projects given in the book have been fully tested and work. The following sub-headings are used in the projects where applicable: - Project title - Project description - Aim of the project - Block diagram - Circuit diagram - Program listing wiringPi and pigpio program listings of all Raspberry Pi projects developed in the book are available on the Elektor website. Readers can download and use these programs in their projects. Alternatively, they can modify the supplied programs to suit their applications. I hope readers find this book helpful and enjoy reading it. Prof Dr Dogan Ibrahim January 2021 London. ### **Table of Contents** | • Preface | |-------------------------------------------------------------| | Chapter 1 • Installing the Operating System on Raspberry Pi | | 1.1 ● Overview | | 1.2 ● Raspbian Buster installation steps on Raspberry Pi 4 | | 1.3 ● Using networked connection | | 1.4 ● Remote access | | 1.5 ● Using Putty | | 1.5.1 ● Configuring Putty | | 1.6 ● Remote access of the Desktop | | 1.7 • Static IP address | | 1.8 ● Summary | | Chapter 2 • Raspberry Pi Program Development | | 2.1 ● Overview | | 2.2 ● The nano text editor | | 2.3 ● Example project | | 2.5 • Creating and running a Python program on Raspberry Pi | | 2.6 • Summary | | | | Chapter 3 • C Programming for Raspberry Pi | | 3.1 • Overview | | 3.2.1 • Variables | | 3.2.2 ● Screen output and keyboard input | | 3.2.3 • Comparison | | · | | 3.2.4 ● Operators | | 3.2.5 ● Auto increment/decrement operators | | 3.2.6 ● Logical operators | | 3.2.7 ● Flow control | | 3.2.8 ● Arrays | | 3.2.9 ● String variables | | 3.2.10 ● Arithmetic functions | | 3.2.11 ● String functions | | 3.2.12 ● Character macros | | 3.2.13 ● Alternative numeric input69 | | 3.2.14 ● User functions | | 3.2.15 ● File processing | | 3.2.16 • Structures | | 5.2.10 • Structures | | 3.2.17 ● Unions | 85 | |--------------------------------------------------------------|-----| | 3.2.18 ● Pointers | 88 | | 3.3 ● Summary | 100 | | Chapter 4 ◆ Hardware Programming using C | 101 | | 4.1 ● Overview | | | 4.2 ● The general purpose input-output ports (GPIO) | | | 4.3 ● Interfacing with GPIO | | | 4.3.1 ● Loads requiring small currents | 102 | | 4.3.2 ● Loads requiring higher currents | 103 | | 4.3.3 ● Using relays | 105 | | 4.4 ● Project 1: Flashing LED - compilers available | 105 | | 4.4.1 ● Using the pigpio library | 106 | | 4.4.2 ● Using the wiringPi library | 107 | | 4.4.3 ● Other C libraries/compilers for Raspberry Pi | 110 | | 4.5 ● Using the Geany editor | 110 | | 4.6 ● The hardware | 112 | | 4.7 ● Summary | 113 | | Chapter 5 ◆ Hardware Projects using C | 114 | | 5.1 ● Overview | 114 | | 5.2 ● Project 1 – Rotating LEDs | 114 | | 5.3 ● Project 2 – Christmas lights | 119 | | 5.4 ● Project 3 – Binary up counter with LEDs | 125 | | 5.5 ● Project 4 – Binary up/down counter with LEDs | | | 5.6 ● Project 5 – LED dice | | | 5.7 ● Project 6 – LED colour wand | | | 5.8 ● Project 7 – Changing the brightness of an LED | | | 5.9 ● Project 8 – Generating random sounds using a buzzer | | | 5.10 ● Project 9 – Display temperature and relative humidity | | | 5.11 ● Project 10 – ON/OFF temperature controller | | | 5.12 • Sulfillary | 1/9 | | Chapter 6 • LCD Projects | | | 6.1 ● Overview | | | 6.2 ● HD44780 LCD module | | | 6.3 • Project 1 – Displaying text | | | 6.4 • Project 2 – Second counter | | | 6.5 • Project 3 – Creating a custom character | | | 6.6 ● Project 4 – Creating multiple custom characters | | | 6.7 ● Project 5 – Displaying current date and time | | | 6.9 • Summary | 200 | | | | | Chapter 7 ◆ I2C Bus Interface | 201 | |-------------------------------------------------------------------------------------|-----| | 7.1 • Overview | 201 | | 7.2 ● The I2C Bus | 201 | | 7.3 ● Project 1 – Port expander | 203 | | 7.4 ● Project 2 – EEPROM memory | 210 | | 7.5 ● Project 3 – TMP102 temperature display | 216 | | 7.6 • Project 4 – I2C LCD | 223 | | 7.7 ● Project 5 – Using the pigpio library with I2C – TMP102 temperature display | 237 | | 7.8 • Summary | 239 | | Chapter 8 • SPI Bus Interface | 240 | | . 8.1 • Overview | | | 8.2 ● Raspberry Pi SPI pins | | | 8.3 • Project 1 – Port expander | | | 8.4 ● Summary | | | 0.4 • Summary. | 232 | | Chapter 9 • Using Analogue to Digital Converters (ADCs) | 253 | | 9.1 ● Overview | 253 | | 9.2 ● Project 1 – Analogue temperature sensor thermometer | 253 | | 9.3 ● Summary | 260 | | Chapter 10 • Using Digital-to-Analogue Converters (DACs) | 261 | | | | | 10.1 • Overview | | | 10.2 ● The MCP4921 DAC | | | 10.3 ● Project 1 - Generating square wave signal with any peak voltage | | | 10.4 ● Project 2 - Generating sawtooth wave signal | | | 10.5 ● Summary | 2/1 | | Chapter 11 • Using Serial Communication | 272 | | 11.1 ● Overview | 272 | | 11.2 ● Raspberry Pi serial port | 274 | | 11.3 • Project 1 – Serial communication between Raspberry Pi and Arduino Uno | 275 | | 11.4 ● Summary | 282 | | Chapter 12 • Other Useful Functions wiringPi | 283 | | 12.1 ● Overview | 283 | | 12.2 ● Project 1 – Using external interrupts – event counter | 283 | | 12.3 • Project 2 – Using the tone library – generating 1kHz signal | | | 12.4 ● Project 3 – Using the tone library – sweep frequency tone generation | | | 12.5 ● Project 4 – Using the tone library – reading the frequency from the keyboard | 291 | | 12.6 ● Project 5 – Using the tone library – melody maker | 293 | | 12.7 ● Timing library | 296 | | 12.8 • Multitasking threads | | | 12.9 ● Project 6 – Multi-threading - flashing 3 LEDs at different rates | | | 12.10 ● Project 7 – Multi-threading – Two-digit 7-segment LED counter | | | 12.11 • Hardware PWM | | | 12.12 • GPIO utility | | | 12.13 ● Support for other chips and add-on boards | 310 | |---------------------------------------------------------------------------------|-----| | 12.14 ● Summary | 310 | | Chapter 13 • Other Useful Functions - pigpio | 311 | | 13.1 • Overview | 311 | | 13.2 ● Project 1 – Using external interrupts – event counter | | | 13.3 ● Timing | | | 13.4 ● Timer interrupts | | | 13.5 ● Project 2 – Using timer interrupts – flashing LED | | | 13.6 ● Project 3 – Using timer interrupts – 2 digit 7-segment LED counter | | | 13.7 ● Project 4 – Multi-threading - flashing 3 LEDs at different rates | | | 13.8 ● Project 5 – Hardware PWM- generate 1kHz PWM wave with hardware . | | | 13.9 ● File handling | | | 13.10 • Waves | | | 13.11 ● picscope | | | 13.12 • pigpiod | | | 13.13 • Summary | | | · · · · · · · · · · · · · · · · · · · | | | Chapter 14 ◆ Communication Over Wi-Fi | 326 | | 14.1 ● Overview | 326 | | 14.2 ● UDP and TCP/IP | 326 | | 14.3 ● UDP communication | 326 | | 14.4 $ullet$ Project 1 – Communicating with an Android smartphone using UDP (Ra | | | is the server) | 327 | | 14.5 ● Project 2 – Sending temperature readings to Android smartphone (Ras | | | the server) | | | 14.6 ● Project 3 – Communicating with an Android smartphone using UDP (Ra | | | is the client) | 336 | | 14.7 ● Project 4 – Sending time-stamped temperature readings to Android sn | • | | (Raspberry Pi is the server) | | | 14.8 ● Project 5 – Web Server application – controlling two LEDs | | | 14.9 ● Summary | 349 | | Chapter 15 • Bluetooth Communication | 350 | | 15.1 ● Overview | | | 15.2 ● Project 1 – Bluetooth communication with a smartphone – sending and | | | text messages | _ | | 15.3 ● Project 2 – Bluetooth communication with a smartphone – controlling | | | | | | | | | Chapter 16 • Automatically Running Programs on Startup | 358 | | 16.1 ● Overview | | | 16.2 ● Scheduling a program to run at specified times | 358 | | Chapter 17 ◆ Sending Data to the Cloud | 366 | | 17.1 ● Overview | 366 | | 17.2 ● Project – Sending temperature and humidity data to the cloud | | | Ta | h | lρ | Ωf | Col | nte | nts | |----|---|----|----|-----|-----|-----| ### Chapter 1 • Installing the Operating System on Raspberry Pi ### 1.1 • Overview In this chapter, we will learn how to install the latest operating system (**Raspbian Buster**) on the Raspberry Pi 4. We will also learn the different ways that Python can be used to develop applications. Notice the installation process given below applies to all Raspberry Pi models unless otherwise specified. ### 1.2 • Raspbian Buster installation steps on Raspberry Pi 4 Raspbian Buster is the latest operating system for the Raspberry Pi. This section provides the steps necessary for installing this operating system on a new blank SD card, ready to use with Raspberry Pi 4. You will need a micro SD card with a capacity of at least 8GB (16 GB is preferable) before installing the new operating system. The steps to install the Raspbian Buster operating system are as follows: Download the Buster image to a folder on your PC (e.g. C:\RPIBuster) from the following link by clicking the Download ZIP under section Raspbian Buster with desktop and recommended software (see Figure 1.1). At the time of writing this book, the file was called: 2020-02-13-raspbian-buster-full.img. You may have to use the Windows 7Zip software to unzip the download due to some features not being supported by older zip software. ### https://www.raspberrypi.org/downloads/raspbian/ Figure 1.1 Raspbian Buster download page - Put the blank micro SD card into the card slot of your computer. You may need an adapter to do this. - Download Etcher to your PC to flash the disk image. The link is (see Figure 1.2): ### https://www.balena.io/etcher/ Figure 1.2 Download Etcher - Double click to open Etcher and then click Select image. Select the Raspbian Buster file you downloaded and unzipped. - Click Select target and select the micro SD card. - Click Flash (see Figure 1.3). This may take several minutes, wait until it is finished. The program will then validate and unmount the micro SD card. You can remove your micro SD card after it is unmounted. Figure 1.3 Click 'Flash' to flash the disk image Your micro SD card now has been loaded with the Raspberry Pi operating system. The various options now are as follows: ### Using direct connection If you are making a direct connection to your Raspberry Pi using a monitor and keyboard, just insert the SD card into the card slot and power-up your Raspberry Pi. After a short while, you will be prompted to enter the login details. The default values are username: **pi**, password: **raspberry**. You can now start using your Raspberry Pi either in command mode or in desktop mode. If you are in command mode, enter the following command to start the GUI mode: ``` pi@raspberrypi:~ $ startx ``` If you want to boot in GUI mode by default, the steps are: Start the configuration tool: ``` pi@raspberrypi:~ $ sudo raspi-config ``` • Move down to **Boot Options** and press Enter to select (Figure 1.4). ``` Raspberry Pi Software Configuration Tool (raspi-config) 1 Change User Password Change password for the current user 2 Network Options Configure network settings 3 Boot Options Configure options for start-up 4 Localisation Options Set up language and regional settings to match your 5 Interfacing Options Configure connections to peripherals 6 Overclock Configure overclocking for your Pi 7 Advanced Options Configure advanced settings 8 Update Update this tool to the latest version 9 About raspi-config Information about this configuration tool ``` Figure 1.4 Select Boot Options - Select **Desktop / CLI** and then select **Desktop Autologin** to boot automatically into GUI mode. - Click **OK** and accept to reboot the system. The system will be in GUI mode next time it reboots. - You can change your selections to boot in command mode if you wish by selecting Console in Boot Options. You may now want to connect your Raspberry Pi to the internet either to access it remotely from a PC or to use the internet. If your Raspberry Pi is equipped with an ethernet port (e.g. Raspberry Pi 2/3/4), you can directly connect to your Wi-Fi router using an ethernet cable. You can find the IP address of your connection by entering the command: ifconfig in command mode. Alternatively, you may want to connect your Raspberry Pi to Wi-Fi and access it remotely. You will need to enable SSH. The steps are as follows: Start the configuration tool: ``` pi@raspberrypi:~ $ sudo raspi-config ``` - Move down to **Interface Options** and select **SSH** and enable it. - If you are in GUI mode, click the Wi-Fi icon at the top right hand of the screen and enable Wi-Fi. Note the IP address allocated automatically to your Raspberry Pi. - You can now remotely access your Raspberry Pi using terminal emulation software, such as **Putty** (see Section 1.4 and 1.5). ### 1.3 • Using networked connection If you do not have a suitable monitor and keyboard to directly connect to your Raspberry Pi, you will have to use a networked connection and remotely access your Raspberry Pi using a PC. There are two options: **connection using an Ethernet cable**, and **connection over Wi-Fi**. Connection using an Ethernet cable: The steps are as follows: Install Notepad++ on your PC from the following web site: https://notepad-plus-plus.org/downloads/v7.8.5/ - Insert the SD card back to your PC and start Notepad++. - Click Edit -> EOL Conversion -> UNIX/OSX Format. - Create a new empty file with the **Notepad++** and save it to the boot folder of the SD card with the name ssh(without any extension), where this file will enable SSH to be used to remotely access your Raspberry Pi. In Windows, this is the only folder you will see which contains items including loader.bin, start.elf, kernel.img, etc. - Insert the SD card back into your Raspberry Pi. - Connect your Raspberry Pi to one of the ports of your Wi-Fi router through an Ethernet cable and power it up. - Find out the IP address allocated to your Raspberry Pi by accessing your Wi-Fi router. Alternatively, install Advanced IP Scanner on your PC, which is available at the following link: https://www.advanced-ip-scanner.com Run the software and look for your Raspberry Pi. You do not have to install the software to run it. Click **Run portable version**, and then **Scan**. As shown in Figure 1.5, the IP address of the author's Raspberry Pi was 191.168.1.202. Figure 1.5 IP address of the Raspberry Pi You can now use Putty to log in to your Raspberry Pi (see Section 1.4 and 1.5) Alternatively, you can find the IP address of your Raspberry Pi by opening the command prompt on your PC with administrator privilege (by right-clicking to accepting to run as an administrator) and then inputting the command: **ping raspberrypi.home** as shown in Figure 1.6. ``` C:\WINDOWS\system32>ping raspberrypi.home Pinging raspberrypi.home [192.168.1.202] with 32 bytes of data: Reply from 192.168.1.202: bytes=32 time=1ms TTL=64 Reply from 192.168.1.202: bytes=32 time=2ms TTL=64 Reply from 192.168.1.202: bytes=32 time=2ms TTL=64 ``` Figure 1.6 Using ping to find the Raspberry Pi IP address It is also possible to find the IP address of your Raspberry Pi using your smartphone. Many apps can be used to find out who is currently using your Wi-Fi router. e.g. **Who's On My Wi-Fi – Network Scanner** by Magdalm. **Connection using Wi-Fi**: This is the preferred method to access your Raspberry Pi and is the one used by the author. Here, as described in Chapter 1, the Raspberry Pi can be placed anywhere you like within the range of the Wi-Fi router and is easily accessed from your PC using Putty (see Section 1.4 and 1.5). ### The steps are: • Install **Notepad++** on your PC from the following web site: https://notepad-plus-plus.org/downloads/v7.8.5/ - Insert the SD card back to your PC and start Notepad++. - Click Edit -> EOL Conversion -> UNIX/OSX Format - Create a new empty file with **Notepad++** and save it to the boot folder of the SD card with the name **ssh**(without any extension), where this file will enable SSH to be used to remotely access your Raspberry Pi. In Windows, this is the only folder you will see which contains items like loader.bin, start.elf, kernel.img, etc. - Enter the following statements into a blank file (replace the **MySSID** and **MyPassword** with the details of your own Wi-Fi router): - Copy the file (save) to the boot folder on your SD card with the name: wpa_supplicant.conf. - Insert the SD card back into your Raspberry Pi and power-up the device. - Use Advanced Ip Scanner or one of the methods described earlier to find out the IP address of your Raspberry Pi. - Log in to your Raspberry Pi remotely using **Putty** on your PC (see Section 1.3 and 1.4). - After logging in, you are advised to change your password for security reasons. You should also run **sudoraspi-config** from the command line to enable VNC, I2C, and SPI as they are useful interface tools that can be used in your future GPIO based work. ### 1.4 ● Remote access It is much easier to remotely access the Raspberry Pi over the internet: for example using a PC rather than connecting a keyboard, mouse, and display to it. Before being able to remotely access the Raspberry Pi, we have to enable SSH by entering the following command in a terminal session (if you have followed the steps given earlier, SSH is already enabled and you can skip the following command): ``` pi$raspberrypi:~ $ sudo raspi-config ``` Go to the configuration menu and select **Interface Options**. Go down to **P2 SSH** and enable SSH. Click **<Finish>** to exit the menu. You should also enable VNC so the Raspberry Pi Desktop can be accessed graphically over the internet. This can be done by entering the following command in a terminal session: ``` pi$raspberrypi:~ $ sudo raspi-config ``` Go to the configuration menu and select **Interface Options**. Go down to **P3 VNC** and enable VNC. Click **<Finish>** to exit the menu. At this stage you may want to shut down or restart your Raspberry Pi by entering one of the following commands in command mode: ``` pi@raspberrypi:~ $ sudo shutdown now or pi@raspberrypi:~ $ sudo reboot ``` ### 1.5 ● Using Putty Putty is a communications program used to create a connection between your PC and Raspberry Pi. This connection uses a secure protocol called SSH (Secure Shell). Putty doesn't need to be installed and can be stored in any folder of your choice and run from there. Putty can be downloaded from the following web site: ### https://www.putty.org/ Simply double click to run it and the Putty startup screen will be displayed. Click **SSH** and enter the Raspberry Pi IP address, then click **Open** (see Figure 1.7). The message shown in Figure 1.8 will be displayed the first time you access the Raspberry Pi. Click **Yes** to accept this security alert. Figure 1.7 Putty startup screen Figure 1.8 Click Yes to accept You will be prompted to enter the username and password. Notice the default username and password are: username: **p** password: raspberry You now have a terminal connection with the Raspberry Pi and can type in commands, including the **sudo** privileged administrative commands. To change your password, enter the following command: ### passwd You can use the cursor keys to scroll up and down through the commands you've previously entered in the same session. You can also run programs although not graphical programs. ### 1.5.1 ● Configuring Putty By default, the Putty screen background is black with white foreground characters. The author prefers to have white background with black foreground characters, with the character size set to 12 points bold. The steps to configure the Putty with these settings are given below. Notice that in this example these settings are saved with the name **RPI4** so that they can be recalled whenever the Putty is restarted: - Restart Putty. - Select **SSH** and enter the Raspberry Pi IP address. - Click Colours under Window. - Set the Default Foreground and Default Bold Foreground colours to black (Red:0, - Green:0, Blue:0). - Set the Default Background and Default Bold Background to white (Red:255, Green:255, Blue:255). - Set the Cursor Text and Cursor Colour to black (Red:0, Green:0, Blue:0). - Select Appearance under Window and click Change in Font settings. Set the font to Bold 11. - Select Session and give a name to the session (e.g. RPI4) and click Save. - Click **Open** to open the Putty session with the saved configuration. - Next time you re-start the Putty, select the saved session and click Load followed by Open to start a session with the saved configuration. ### 1.6 • Remote access of the Desktop You can control your Raspberry Pi via Putty, and run programs on it from your Windows PC. This however will not work with graphical programs because Windows doesn't know how to represent the display. As a result of this, for example, we cannot run any graphical programs in the Desktop mode. We can get round this problem using some extra software. Two popular software used for this purpose are: VNC (Virtual Network Connection), and Xming. Here, we shall be learning how to use the VNC. ### **Installing and using VNC** VNC consists of two parts: VNC Server and the VNC Viewer. VNC Server runs on the Raspberry Pi, and the VNC Viewer runs on the PC. VNC server is already installed on your Raspberry Pi and is enabled as described in Section 1.3 using **raspi-config**. The steps to install and use VNC Viewer on your PC are given below: • There are many VNC Viewers available, but the recommended one is TightVNC which can be downloaded from the following web site: https://www.tightvnc.com/download.php - Download and install **TightVNC** for your PC. You will have to choose a password during the installation. - Enter the following command: ``` pi@raspberrypi:~ $ vncserver :1 ``` • Start **TightVNC Viewer** on your PC and enter the Raspberry Pi IP address (see Figure 1.9) followed by :**1**. Click **Connect** to connect to your Raspberry Pi. Figure 1.9 Start TightVNC and enter the IP address Figure 1.10 shows the Raspberry Pi Desktop displayed on the PC screen. Figure 1.10 Raspberry Pi Desktop on a PC screen ### 1.7 • Static IP address When we are using the Raspberry Pi with a Wi-Fi router, the IP address is automatically allocated by the router. It is possible that every time we start the Raspberry Pi, the Wi-Fi router will give the Pi another IP address. This makes it difficult to log in as we have to find the new IP address before we log in. We can give our Raspberry Pi a static IP address so that every time it starts, the same IP address is allocated from the Wi-Fi router. The IP address is given by the DHCP protocol running on the Wi-Fi router. Before setting a static IP address, we have to decide what this address will be, and also make sure that no other devices on our network use this address. We can check this by logging in to the Wi-Fi router or by displaying the devices on our network using an app on a smartphone. The steps to assign a static IP address are as follows: • First, check **dhcpcd** is active by entering the following command: ``` pi@raspbberrypi:~ $ sudo service dhcpcd status ``` You should see the text **active:** (**running**) displayed as shown in Figure 1.11 (only part of the display is shown). Enter **Ctrl+C** to exit from the display. ``` pi@raspberrypi:~ $ sudo service dhcpcd status • dhcpcd.service - dhcpcd on all interfaces Loaded: loaded (/lib/systemd/system/dhcpcd.service; enabled; vendor pres Active: active (running) since Thu 2020-06-18 23:06:12 BST; 2 weeks 5 ds Process: 375 ExecStart=/usr/lib/dhcpcd5/dhcpcd -q -b (code=exited, status Main PID: 416 (dhcpcd) Tasks: 2 (limit: 4035) Memory: 4.5M ``` Figure 1.11 Check DHCP running If dhcpcd is not running, enter the following commands to activate it: ``` pi@raspbberrypi:~ $ sudo service dhcpcd start pi@raspbberrypi:~ $ sudo systemctl enable dhcpcd ``` - We now need to find the IP address (Default Gateway) and the Domain Name Server address of our router. This can easily be obtained either from our Wi-Fi router or PC. The steps to obtain these addresses from a PC are: - Go to **Control Panel** on your Windows 10 PC. - Click Network and Sharing Centre. - Click Internet as shown in Figure 1.12. Figure 1.12 Click Internet • Click **Details**. You will see a screen similar to the one shown in Figure 1.13 where you can see the Default Gateway and DNS server addresses. In this example, they are both: 191.168.1.254. | DHCP Enabled | Yes | |----------------------|-----------------------| | IPv4 Address | 192.168.1.199 | | IPv4 Subnet Mask | 255.255.255.0 | | Lease Obtained | 08 July 2020 08:10:45 | | Lease Expires | 09 July 2020 12:27:53 | | IPv4 Default Gateway | 192.168.1.254 | | IPv4 DHCP Server | 192.168.1.254 | | IPv4 DNS Server | 192.168.1.254 | Figure 1.13 Click Details You will have to edit the following file: /etc/dhcpcd.conf using a text editor such as nano. Although you may not be familiar with nano, follow the instructions given here (nano is described in a later chapter). ``` pi@raspbberrypi:~ $ sudo nano /etc/dhcpcd.conf ``` Go to the end of the file using the down arrow key and enter the following lines: ``` interface wlan0 static ip_address=191.168.1.120/24 static routers=191.168.1.254 staticdomain_name_servers=191.168.1.254 interface eth0 static ip_address=191.168.1.120/24 static routers=191.168.1.254 static domain_name_servers=191.168.1.254 ``` In this example, we chose a static IP address of 191.168.1.120 after making sure there are no other devices on our network with the same IP address. The suffix /24 is an abbreviation of the subnet mask 255.255.255.0. You have to make sure you only change the last digit of the IP address. i.e. choose an address in the form 191.168.1.x. **wlan0** is for the Wi-Fi link, and **eth0** is for the Ethernet link. - Now, save the file by entering Ctrl+X, followed by Y. - Display the file on your screen to make sure the changes you made are correct. Enter the command: ``` pi@raspberrypi:~ $ cat /etc/dhcpcd.conf ``` Reboot your Raspberry Pi and it should come up with the IP address set as required ### **1.8 • Summary** In this chapter, we learned how to install the latest Raspberry Pi operating system on an SD card, and also how to start using the Raspberry Pi remotely. The instructions provided apply to all versions of Raspberry Pi. Additionally, setting a static IP address for your Raspberry Pi is demonstrated. In the next chapter, we will look at various Raspberry Pi program development tools. ### Index ### **Symbols** 7-Segment *300*, *304* **24LC256** *210*, *212*, *214* ### Α ADCs 9, 252, 253 Advanced Ip Scanner 17 Android smartphone 10, 327, 328, 330, 341, 349, 351, 352 Arduino Uno 9, 275 Arithmetic functions 7, 61 Arrays 7, 55, 95 ASCII 57, 184, 272 Auto increment/decrement operators 7, 41 ### C Character macros 7, 67, 68 command mode 14, 17, 28, 34, 226, 257, 351 comparison operators 40 crontab 358, 359, 360, 361, 362, 365 Crontab generator 362 current sinking mode 103, 302 current source mode 103 ### D DACs 9, 260, 261 dhcpcd 22, 23 DHT11 160, 168, 170, 171, 178, 196, 367, 371 do...while 47 ### Ε EEPROM 9, 210, 211, 212, 213, 214, 215, 216 ESP32 DevKitC 119 Etcher 13 Ethernet cable 15 event counter 9, 10, 283, 284, 286, 311 external interrupts 9, 10, 283, 284, 311 ### F File processing 8, 78 Flow control 7, 41 Function prototyping 74 ### G Geany 8, 110, 111, 112, 117 ### н HD44780 *8, 180, 181, 182, 223* Hitachi HD44780 *180, 182* HTTP Web server *342* ### Ι I2C Bus 9, 201 I2C LCD 9, 223, 224, 227, 231, 232 ### L LCD functions 184, 231 Logical operators 7, 41 ### М MCP23017 203, 204, 205, 206, 207, 243, 245, 310 Memory read 212 Memory write 211 Memory write operation 211 Mu 31, 32, 33, 34 multi-tasking 296 multi-threading 296 ### N NULL character 57, 60, 89, 328, 345 ### O Operators 7, 40 ### Р pigpiod 10, 325 pigpio library 8, 9, 106, 237, 238, 250, 251, 315, 326 Pointers 8, 88, 89, 93 PrntStr 77, 78 Putty 7, 15, 16, 17, 18, 19, 20, 175, 257 PWM 10, 152, 153, 154, 155, 157, 158, 159, 160, 308, 309, 322, 323 ### R Raspbian Buster 7, 12, 13, 25, 31 return statement 71 RS232 272, 273 ### S sawtooth wave signal 9, 267, 268, 270 scanf 37, 38, 40, 43, 44, 59, 60, 84, 85, 178 Serial Communication 9, 272 serial communications functions 276 serial port 9, 274, 275, 276, 278, 280, 283 SPI Bus 9, 240 SSH 15, 16, 17, 18, 19, 28, 175, 324 Static IP address 7, 21 String functions 7, 63 String variables 7, 57 Structures 8, 82, 83 sudonetstat 348, 349, 369 switch statement 43, 44, 142 ### Т TCP/IP 10, 326 Temperature control 172 ThingSpeak 366, 367, 369, 372, 373 Thonny 28, 29, 30, 31, 34 TMP102 9, 216, 217, 218, 219, 220, 332, 333, tone library 9, 287, 290, 291, 293 ### U UDP protocol 326, 331, 337 Unions 8, 85, 86, 87 ### v VNC 17, 20 ### W Web Server application 10, 341 while statement 47 ## C Programming on Raspberry Pi Develop innovative hardware-based projects in C The Raspberry Pi has traditionally been programmed using Python. Although this is a very powerful language, many programmers may not be familiar with it. C on the other hand is perhaps the most commonly used programming language and all embedded microcontrollers can be programmed using it. The C language is taught in most technical colleges and universities and almost all engineering students are familiar with using it with their projects. This book is about using the Raspberry Pi with C to develop a range of hardware-based projects. Two of the most popular C libraries, wiringPi and pigpio are used. The book starts with an introduction to C and most students and newcomers will find this chapter invaluable. Many projects are provided in the book, including using Wi-Fi and Bluetooth to establish communication with smartphones. Many sensor and hardware-based projects are included. Both wiringPi and pigpio libraries are used in all projects. Complete program listings are given with full explanations. All projects have been fully tested and work. The following hardware-based projects are provided in the book: - Using sensors - Using LCDs - > I²C and SPI buses - > Serial communication - Multitasking - > External and timer interrupts - > Using Wi-Fi - > Webservers - Communicating with smartphones - > Using Bluetooth - > Sending data to the cloud Program listings of all Raspberry Pi projects developed in this book are available on the Elektor website. Readers can download and use these programs in their projects. Alternatively, they can customize them to suit their applications. Prof. Dr. Dogan Ibrahim is a Fellow of the Institution of Electrical Engineers. He is the author of over 60 technical books, published by publishers including Wiley, Butterworth, and Newnes. He is the author of over 250 technical papers, published in journals, and presented in seminars and conferences. **Elektor International Media BV** www.elektor.com