Warren Gay

-7,

J|
&

- W W R W W W W wow
- - - o=
~ ®mom AW wom oA o
P m a m A eSS s R

noRAE A AR A A TN
S U T s

4 3 3% 3 % 8 B E B E & B & B {
233 23S EREREEE AN Y
i 2 2 S " 23 2a:EAEEGROE

« 3 % % 3 % % W%
" 2 2 ¥ 2 3 % A2 2 EEDRDRODBD

d 4 2 T 3 X 3 % 3 R B X B E B oL R

o
1=
-
d
e
<
(.
o
o
)
LLl
-
rm
)
m
(a4
)
)
-
I

Practical Multitasking Fundamentals

FreeRTOS for ESP32-Arduino

Practical Multitasking Fundamentals
O

Warren Gay

= . LEARN) DESIGN) SHARE
A

@ This is an Elektor Publication. Elektor is the media brand of
Elektor International Media B.V.

78 York Street, London W1H 1DP, UK

Phone: (+44) (0)20 7692 8344

@ All rights reserved. No part of this book may be reproduced in any material form, including
photocopying, or storing in any medium by electronic means and whether or not transiently or incidentally
to some other sue of this publication, without the written permission of the copyright holder except in
accordance with the provisions of the Copyright Designs and Patents Act 1988 or under the terms of a
licence issued by the Copyright Licencing Agency Ltd., 90 Tottenham Court Road, London, England W1P
9HE. Applications for the copyright holder's permission to reproduce any part of the publication should be

addressed to the publishers.

@ Declaration

The author and publisher have used their best efforts in ensuring the correctness of the information
contained in this book. They do not assume, or hereby disclaim, any liability to any party for any loss or
damage caused by errors or omissions in this book, whether such errors or omissions result from negligence,

accident or any other cause..

@ British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library
@® ISBN 978-1-907920-93-6

© Copyright 2020: Elektor International Media b.v.
Prepress Production: D-Vision, Julian van den Berg
First published in the United Kingdom 2020

Elektor is part of EIM, the world's leading source of essential technical information and electronics products for pro
engineers, electronics designers, and the companies seeking to engage them. Each day, our international team develops
and delivers high-quality content - via a variety of media channels (including magazines, video, digital media, and social
media) in several languages - relating to electronics design and DIY electronics. www.elektormagazine.com

LEARN) DESIGN) SHARE

Contents

ChapterlelIntroduction ittt nnnnnnnnrnsrsssnsnnnnnnnnnns 17
The Need for RTOS . . . o o o e e e ettt et e e 17
FreeRTOS ENGINEEriNg o o it e e e e e e e e e e e e 18
Hardware e e e e 19
Dev Boards e 19
ESP8266 . . . e 20
FreeRTOS Conventions. o ot e e e e e e e e e e e e s 20
Variable Names.o e e 21
Function Names 21
Macro NameEs o e 21
Header Files . . . o o o e 21
ArdUiNO SeEUPD. . . o oo e e 22
ESP32 ArdUiNO . . o ot e e e e 22
ESP Related Arduino RESOUICES. v v v vt i e e e e e 24
Cand G e e 24
FreeRTOS and CH+ o e s 25
Arduino FreeRTOS Config . . v v v v i o i e e e e e e e e e e e e e e e e 26
ESP32 Notes. 27
Arduino GPIO ReferencCes v oo e e e 27
INpUL ONlY . o e e e e e e 27
Reserved GPIOS 27
GPIO Voltage and Drive o oo e e e e 28
PrOgrams . . o e 28
Graphics/Drivers Usedo e 28
TTGO ESP32 T-Display . . o v v ottt e e e e e 28
MEStack. . . . e 29
Assumptions about the Reader 29
SUMIMIANY .+ v v v e 29
Web RESOUICES e e 29

Chapter 2 e TasksS. . . .t v vttt v v s s e st s nnnassnnnnssssnnnassnnnnnsssnns 30
Preemptive Scheduling e 30
Arduino Startup . . o o e 31

Fre

eRTOS for ESP32-Arduino

Main Task. . . v e 32
Task Demonstration. o oo 33
Program Designo e e 35
Stack Size 37
Memory Management in FreeRTOSo it 38
Static Tasks o o e 39
Task Delete . . . o o e 41
Task SUSPENd/RESUME. . . . o i ittt e e e 43
Task Time Slice. . . . 44
Yielding CPU . . o o o 47
ASSErt MacCrO . . o vttt e 49
SUMIMAIY . o v v e e e e e e et e e e e e 51
EXEICISES . . v v e e 51
WED RESOUINCES & & v v v v it e e e e e e 51
Chapter 3o QUeUeSt rtnnnnnsrtnnnnsssannnsssannnnssnnnnnssns 52
Queue Characteristics i it e e e e e 52
Arrival Pattern 52
(7= = o | 53
Service Discipline o e 53
Sources and Destinations. e 53
Basic Queue API e 54
Creating Static QUeUES i e 54
Queuing an Ttem. 55
Receiving from @ QUEUE. o oo e e e 56
Dynamic Queue Creationo it i e e e e e e e 57
Queue Delete i 57
QueUE ReSEl. . . . i e e e e e e 57
Task Scheduling e 58
Blocked while Adding. o 58
Blocked while ReCeiVINg o ot e 58
Demonstration 59
Program Setup e 60

e 6

Contents

Debounce Task . . . oo e 63
LED Task . . . v s 63
Press Demonstration 63
Safety Improvement 68
The Temptation to Optimize o oo et e 72
Informational APT i e 72
Peeking at the Queue 72
Variable Length Ttems o oo e 73
Interrupt ProCesSing . . . o v v i e e e e e e 73
SUMMIAIY & & vt e 74
EXerCiSes . . o 74
Chapter4 @ Timers. v v ittt v s s s st nnnnsssannnssssnnnssssnnnnsssnns 75
Timer Categories. o v v v v vt s e e e e e 75
Software TImMers . . . o e e e 76
The Timer Callback o e e 76
Timer Limitations o oo e 76
TimerID Value e 77
AbUSING TiMeEr ID . . . e 78
TIMEr TY DS .« o o o e e e e e e e e 79
Timer States. o e 79
Create Static Timer. o 80
Create DynamicC Timer. . . . o ot e e e e e 81
Activating the Timero e 81
Demonstration e 82
AlertLED ConstruCtor. . . . v v v it e e e 84
AlertLED INStanCe . . . o o o e e 84
AlertLED::alert() Method o oo 85
Stopping the Alert. . . . o e e e 86
setup() @and 100p(). « « v v v it 86
Demo Notes 89
PrioritY L .o e e e e e 89
The Class Advantage o o oot e 89

Fre

eRTOS for ESP32-Arduino

Task Timer AP . . e 90
XTaskGetTiCKCoUNt() .« v v v e e e e e 90
XTaskDelayUntil() . . . o oo e e e 91
Demonstration Observation e 94
SUMMIAIY . & v e e s 96
EXErCiSES . . v e 96
WED RESOUICES . . . i et e 96
Chapter 50 Semaphores v oeeerrnnnnasrnnannssanannsrannnnsnns 97
SEMaAPOrE TYPES & o v v e e e e 97
Binary Semaphores 97
Counting Semaphores i i 98
Binary Semaphore Demonstration. e 98
Program Operation 105
LOCKS o o e e 106
Deadlocks e 106
Dining Philosophers. 107
Dining Philosophers DemoO o o vttt e e 107
Deadlock Prevention e 109
LOCKUPS .« v v e e e e e e 109
Insidious DeadloCKS. v v vt e e 114
SUMMAMY . & v v e 115
EXErCiSeS . o v e 115
WED RESOUICES . . . o e e e 115
Chapter6 e Mailboxes ittt tnnnn s tnnnanssnnnnnnns 116
The Problemo 116
The MailboX . . . o o e 117
Creatinga Mailbox 118
Reading the MailboX o i e 118
Mailbox Demonstration e 118
Program DisSection o o i e 121
SUMIMIAIY .« & v v e e e e e e e e e e e et e e e e e e e e e e e e 129
EXEICISES . v i e e 129

Web LiNKS . . . e e e 129

Chapter 7 e Task Priorities.o i it i ittt i s s s 130
vTaskStartScheduler() oo i e e e e 130
What does vTaskStartScheduler() do? 130
Configured Scheduling Algorithm 130
Task Pre-emption e e 131
Time SHiCING . . o o o e e 131
ESP32 Task Priorities. oo e e 131
Task Stateso e e 131
I/0 and Sharing the CPU e 132
Preventing Immediate Task Start i e 133
Simple Demonstration 133
BloCKING. . . . v 135
Creating a Ready-to-Go Task i i e e e e 137
ESP32 Dual Core Wrinkle 139
Priority Demonstration. e 140
EXperiment L e e e e 140
EXperiment 2 e e 142
Experiment 3 142
EXperiment 4 e e e 143
Priority Configuration. e 149
Scheduler ReVIEW e 149
SUMIMIAIY . v v v e e e e e e e e e e 150
EXErCiSes . . o i e 150
WeEb RESOUICES . . o o o e e 150

Chapter8 e Mutexes.o it ittt n s st s st s s st n s nnnnnsnnn 151
Exclusion Principle.o 151
What's the Problem? o e 151
The Mutex Solution o e 152
Priority INVErsion e 153
Creating @ MUteX. i e e e 154
Give and TaKe. it 154

FreeRTOS for ESP32-Arduino

Deleting @ MUteX. . . . o it e e 155
Demonstration e 155
PCFB574 Chip. . o oo e e 155
LED DiVe. . v it i e e e e e e e e e e e 156
Code Break DOWN . . . v i 157
Troubleshooting o oo e e 158
BliNK LOOP . . o ot e e 158
Running the Demonstration i e 159
Recursive Mutexes e 163
Recursive Mutex APT o 163
Deadlock Avoidance and Prevention 164
Recursive Mutex Usage i 164
SUMMIAIY .« vt e e e e 165
EXErCiSeS . . v e 165
WED RESOUICES & & . o e e e 165
Chapter9eInterrupts.ttt eannnnnnnnnnnnnnns 166
Characteristics of an ISR i e e 166
The Asynchronous ISR. o e e e e e 166
The ISR StacK. . . . vt e e 167
Non-Reentrant Routine Calls. i e e 167
ISR Priorities . . . o o e 167
Short ISR ROULINES ot e e e 168
ISRisnotaTask. 168
Special ISR Code.o 168
ESP32 Arduino GPIO Interruptsttt e e 169
Frequency Counter Project o i i e 169
Challengeso 169
APPIOaCh . o e e e e e 170
Case 1 = 300,000 Hz. . .. oo e e 171
Case 2 =500 Hz s 171
Project Code. . . . o i e 172
Range FiNding. e 174

e 10

ISR ROULINE . . .o e e e e e e e 175

XQUeueSendFromMISR() . . v vt e 176
POrtYIELD_FROM_ISR() .« v v v v it e e e e e e et e e e e e s 177
Running the Demo 177
Troubleshooting the Wemos Lolin ESP32 i 179
Pulse Counter Notes oo e 179
Setup for Interrupts 180
TTGO ESP32 T-Display . . o v v vt i e e e e e e 186
Troubleshooting the TTGO i e e e e e e e e e 187
MEStaCK. . o e e 188
Troubleshooting M5StacK o v i e e 189
SUMIMIAIY . o v v e e e e e e e e e e 190
EXErCiSEeS . o v o 190
WeEb RESOUICES . . o o o e e 190
Chapter10eQueue Setst iiinnnnnnnnsnssssssssnnnnnnnsnnnnns 191
The Problem . . . o o o e 191
The QUEUE Set . . . o i e e 192
Queue Set Configuration 192
Quele Set SeleCt i e e e 192
Queue Set Traps To AVOid it i e e 193
XQUeUEAddToSet Trap L. . . v o 193
XQUEUEAdATOSEL Trap 2. . . v o e i e e e e 193
Demonstration 194
Program Breakdown 195
SEEUP() v v e e e e 196
ISR ROULINES . . o e 197
Event Monitoring Task 198
MUteXES. . . . e 199
SUMMIAIY .« & vt e 202
EXerCiSes . . . 202
Chapter1l eTaskEvents.iiininnnnnnnnrsssssnnnnnnnnnnnnnns 203
Task Notification oo e 203

FreeRTOS for ESP32-Arduino

ReStrictions e 203
Waiting . . . e 204
ulTaskNotifyTake() . . v v i i e e e e e e e e e e e 204
Binary Notification. e 204
Counting Notification i e 205
Give NOtify . . . e e e 205
Demonstration 1. i e 205
Demonstration 2. e 208
Demonstration 3. e 210
Going Beyond Simple Notifyo o 212
Argument 3 — ulBitsToClearOnEXit. o oot e 213
Argument 2 - ulBitsToClearOnENtry. o 213
Smart Notify. . . . oo 213
Argument eACtion e e 213
Demonstration 4. e 214
Demonstration 5. e 217
SUMMIAIY .« & v v e e e e e e e e et e e e e e e e e e e e 222
EXEICISES . . v i e 222
WED RESOUINCES . & v v vttt e i e e e e e e 222
Chapter 12 e EVENt GrOUPS. « « v v v v v v v v v s s s st s s snsnssnsssnsnnnnnnnnnnns 223
EventBits_t Type. . . o o i 223
Creating an Event Group Object 223
Notifying an Event Group o o0t t ee 224
Waiting for EVENt GroUPS . . . o ot e e e e e e e e e e 224
Demonstration 1. e 225
Demo CoNCIUSION . . . o ot e 229
Synchronization 236
Demonstration 2. e 236
Auxiliary FUNCEIONS . . . o o 241
VEventGroupDelete() . . . v v oo e e e 241
XEventGroupClearBits() v v v v i e e e 241
XEVENtGroupGetBitS() « & v v v v o 241

e 12

XEventGroupSetBitsFromISR() i i i e e 242

SUMMIAIY .« & v e 242
EXerCiSes . . . 242
Web RESOUICES e e e e 242
Chapter 13 e Advanced TOPICS . 1 v v v v s st v v s s s st nnn s st nnnnnssnnnnnsnnn 243
Watchdog Timers e e e 243
Watchdog Timer for the loopTask 243
Enabling Task Watchdog 245
Watchdog For Multiple Tasks. o i e e e 247
Non-Arduino Watchdog Use e 251
The Idle Task . . o oot e 252
Critical SeCtions o i 252
ESP32 Critical Sections 253
Critical Sections for ISRS o it e 255
Interrupts . . 255
Task Local Storage 255
UXTaskGetNuUmMberOfTasks() . . v v v o v i e e e e e e e e e e e 259
XTaskGetSchedulerState() o it 259
eTaskGetState() . . . v v v v i i e 259
XTaskGetTickCount() . . . v v v v e e e e e 259
VTaskSUSPENdAII(). . v v v o e e e 259
ESP32 Arduino Limitations e 260
SUMIMIAIY . v v v e e e e e e e e e e 260
EXErCiSes . . o i e 260
WeEb RESOUICES . . o o o e e 260
Chapter 14 e Gatekeeper Tasks it v vt n st s s s nnnnns 261
Gatekeepers. . . . o 261
Demonstration s 262
Extension GPIO Designationso ittt e 262
Gatekeeper APL. . . . e e e 263
Demonstration XGPIO e 263
OpEratioN. . v v 265

FreeRTOS for ESP32-Arduino

Gatekeeper Code it e 265
Gatekeeper Initialization 267
Gatekeeper API FUNCLIONS i it i e e e e e e e e e e e 267
Gatekeeper Task oo it 270
Input from PCFB574P o e e e 270
Output to the PCF8574P. e e e e e e 271
PCF8574P State Management. oottt e 271
Troubleshooting oo i e e e 272
SUMIMIAIY .« & v v e e e e e e e e e e e e et e e e e e e e e e e e e 280
EXEICiSES . v i e 281
Chapter15e Tipsand Hints. ot iiii it tnnnnnsrsnnnnnssnnnnnnns 282
Forums: Invest Some Effort e 282
Start Small. 282
The Government Contract Approach i e e e i 283
The Basic Shell e 283
The Stub Approach e 283
BloCK Diagramis. . . . o ot e e e e e e e e e e e e e e e 284
FaUILS . . o e 285
Know Your Storage Lifetimes i 285
Avoid External Names oo 286
Leverage SCope i e 286
Rest the Brain. e 287
Note BOOKS. o e e 287
Asking for Helpot e 287
Divide and ConquUer. oo i i e e 288
Programming for ANSWeErS o 0 vttt e 288
Leverage the find Command. e 289
Infinitely Malleable e 291
Make Friends with Bits. e 292
EffiCienCY e e 292
Source Code Beautyo v vttt e e 292
Fritzing vs Schematics e 293

e 14

Pay now or Pay Later. i e e e 293

Indispensable Programmers o i 293
Final Curtain. 294
AppendiX A i i it 295
AppendiXx B - Parts. ittt n st s 301
Index ... ittt i i s s s s a s 302

e 15

FreeRTOS for ESP32-Arduino

e 16

Chapter 1 e Introduction

Chapter 1 e Introduction

In recent times, the development of System on a Chip (Soc) has lead to the popular use of
microcontrollers. Many products sold today will have one or more microcontrollers found
inside. Their small size, low cost, and increasing capabilities make them very compelling.
Beginning in 2005, the Arduino project made microcontrollers more accessible to students
by simplifying the programming environment.[1] Since then, hobbyists and engineers alike
have exploited its capabilities.

More recently, FreeRTOS within the Arduino software framework has been introduced on
some platforms. Why is FreeRTOS beneficial? What problems does it solve? How can FreeR-
TOS be leveraged by your project? These are some of the questions answered in this book
with demonstrations.

Not all Arduino hardware platforms support FreeRTOS. The RTOS (Real-Time Operating
System) component requires additional resources like SRAM (Static Random Access Mem-
ory) and a stack for each task. Consequently, very small microcontrollers won't support
it. For larger microcontrollers that do, a rich API (Application Programming Interface) is
available to make writing your application easier and more powerful.

The Need for RTOS

The general approach used on small AVR (ATmel) devices is to poll for events and respond.
A program might test for button presses, incoming serial data, take temperature readings,
and then at the right time, produce a result like closing relays or sending serial data. That
polling approach works well enough for small projects.

As the number of input events and conditions increases, the complexity tends to multiply.
Managing events by polling requires an ever-increasing management of state. Well de-
signed programs may, in fact, implement a formal "state machine" to organize this com-
plexity.

If instead, the same program was split into independently executing subprograms, the
problem becomes much simpler to manage. Within FreeRTOS, these are known as tasks.
The button press task could examine the GPIO input and debounce it. It becomes a sim-
ple loop of its own, producing an event only when the debounced result indicates that the
button was pressed. Likewise, the serial input task operating independently can loop while
receiving characters until an end of line character was encountered. Once the serial data
was decoded, the interpreted command could signal an event. Finally, the master task, re-
ceiving both the button press and command events from other tasks can trigger an action
event (like the closing of relays). In this manner, a complex application breaks down into
smaller tasks, with each task focusing on a subset of the problem.

How are tasks implemented? In the early years of computing, mainframes could only run
one program at a time. This was an expensive way to use a computer that occupied the
size of a room. Eventually, operating systems emerged, with names like the Time Sharing
Option (TSO), which made it possible to share that resource with several users (all running

e 17

FreeRTOS for ESP32-Arduino

different programs). These early systems gave the illusion of running multiple programs
at the same time by using a trick: after the current time slice was used up, the program’s
registers were saved, and another program'’s registers were reloaded, to resume the sus-
pended program. Performed many times per second, the illusion of multiple programs run-
ning at once was complete. This is known as concurrent execution since only one program
is running at any one instant.

A similar process happens today on microcontrollers using an RTOS. When a task starts,
the scheduler uses a hardware timer. Later, when the hardware timer causes an interrupt,
the scheduler suspends the current task and looks for another task to resume. The cho-
sen task’s registers are restored, and the new (previously suspended) task resumes. This
concurrent execution is also known as preemptive scheduling because one task preempts
another when the hardware timer interrupts.

Preemptive scheduling is perhaps the main reason for using FreeRTOS in today’s projects.
Preemptive scheduling permits concurrent execution of tasks, allowing the application de-
signer to subdivide complex applications without having to plan the scheduling. Each com-
ponent task runs independently while contributing to the overall solution.

When there are independent tasks, new issues arise. How does a task safely communicate
an event to another task? How do you synchronize? How do interrupts fit into the frame-
work? The purpose of this book is to demonstrate how FreeRTOS solves these multitasking
related problems.

FreeRTOS Engineering

It would be easy to underestimate the design elegance of FreeRTOS. I believe that some
hobbyists have done as much in forums. Detractors talk about the greater need for effi-
ciency, less memory, and how they could easily implement their routines instead. While
this may be true for trivial projects, I believe they have greatly underestimated the scope
of larger efforts.

It is fairly trivial to design a queue with a critical section to guarantee that one of several
tasks receives an item atomically. But when you factor in task priorities, for example, the
job becomes more difficult. FreeRTOS guarantees that the highest priority task will receive
that first item queued. Further, if there are multiple tasks at the same priority, the first
task to wait on the queue will get the added item. Strict ordering is baked into the design
of FreeRTOS.

The mutex is another example of a keen FreeRTOS design. When a high priority task at-
tempts to lock a mutex that is held by a lower priority task, the later’s priority is increased
temporarily so that the lock can be released earlier, to prevent deadlocks. Once released,
the task that was holding the mutex returns to its original priority. These are features that
the casual user takes for granted.

The efficiency argument is rarely the most important consideration. Imagine your appli-
cation written for one flavour of RTOS and then in another. Would the end-user be able to

e 18

Chapter 1 e Introduction

tell the difference? In many cases, it would require an oscilloscope measurement to note
a difference.

FreeRTOS is one of several implementations that are available today. However, it's free
status and its first-class design and validation make it an excellent RTOS to study and use.
FreeRTOS permits you to focus on your application rather than to recreate and validate a
home-baked RTOS of your own.

Hardware

To demonstrate the use of the FreeRTOS API, it is useful to concentrate on one hardware
platform. This eases the requirements for the demonstration programs. For this reason, the
Espressif ESP32 is used throughout this book, which can be purchased at a modest cost.
These devices have enough SRAM to support multiple tasks and have the facilities neces-
sary to support preemptive scheduling. Even more exciting, is the fact that these devices
can also support WiFi and TCP/IP networking for advanced projects.

Dev Boards

While almost any ESP32 module could be used, the reader is encouraged to use the "dev
board" variety for this book. The non-dev board module requires a TTL to serial device to
program its flash memory and communicate with. Be aware that many TTL to serial devices
are 5 volts only. To prevent permanent damage, these should not be used with the 3.3 volt
ESP32. TTL to serial devices can be purchased, which do support 3.3 volts, usually with a
jumper setting.

The dev boards are much easier to use because they include a USB to serial chip onboard.
They often use the chip types CP2102, CP2104, or CH340. Dev boards will have a USB
connector, which only requires a USB cable to plug into your desktop. They also provide
the necessary 5 volts to 3.3-volt regulator to power your ESP32. GPIO 0 is sometimes
automatically grounded by the dev board, which is required to start the programming. The
built-in USB to serial interface makes programming the device a snap and permits easy
display of debugging information in the Arduino Serial Monitor. Dev boards also provide
easy GPIO access with appropriate labels and are breadboard friendly (when the header
strips are added). The little extra spent on the dev board is well worth the convenience and
the time it will save you.

One recommended unit is the ESP32 Lolin with OLED because it includes the OLED display.
It is priced a little higher because of the display but it can be very useful for end user ap-
plications. Most ESP32 devices are dual-core (two CPUs), and the demonstrations in this
book assume as much.

If you are determined to use the nondev board variety, perhaps because you want to
use the ESP32CAM type of board, then the choice of USB to TTL serial converter might
be important. While the FT232RL eBay units offer a 3.3-volt option, I found that they are
problematic for MacOS (likely not for Windows). If the unit is unplugged or jiggled while the
device is in use, you lose access to the device, and replugging the USB cable doesn’t help.
Thus it requires the pain of rebooting and is, therefore, best avoided.

e 19

FreeRTOS for ESP32-Arduino

Table 1-1 summarizes the major Espressif product offerings that will populate various de-
velopment boards. When buying, zoom in on the CPU chip in the photo for identifying
marks. There are other differences between them in terms of peripheral support etc., not
shown in the table. Those details can be discovered in the Espressif hardware PDF data-
sheets. All examples in this book assume the dualcore CPU to run without modification. The
demonstrations can be modified to work on a single core unit but when learning something
new, it is best to use tested examples first.

Series Cores CPU Clock SRAM + RTC Marking
ESP32 2 80 to 240 MHz | 520kB+16kB ESP32-DOWD
ESP32-DOWDQ6
ESP32-D2WD
1 520kB+16kB ESP32-SO0WD
ESP32-S2 1 240 MHz 320kB+16kB

Table 1-1. Major Espressif Product Offerings

ESP8266

The hardware of the ESP8266 is quite capable of supporting FreeRTOS. If you use the
Espressif ESP-IDF (Integrated Development Framework), you can indeed make use of the
FreeRTOS API there. Unfortunately, the Arduino environment for the ESP8266 does not
make this available, even though it has been used internally in the build.

To keep things simple for students familiar with Arduino therefore, this book is focused on
the dualcore ESP32. What is described for FreeRTOS in this book can also be applied to the
ESP-IDF for both the ESP8266 and the ESP32 devices.

FreeRTOS Conventions
Throughout this book and in the Arduino source code, I'll be referring to FreeRTOS function
names and macros using their naming conventions. These are outlined in the FreeRTOS
manual, which is freely available for download as a PDF file.[2] These are described in Ap-
pendix 1 of their manual.

While I am not personally keen on this convention, it is understood that the FreeRTOS
authors were thinking about portability to many different platforms. Knowing their con-
ventions helps when examining the reference API. The following two data types are used
frequently:

e TickType_t - For the Espressif platform, this is a 32-bit unsigned integer
(uint32_t), which holds the number of system ticks.

e BaseType_t - For the Espressif platform, this is defined as a 32-bit unsigned

integer (uint32_t). The type is chosen to be efficient on the hardware platform
being used.

e 20

Chapter 1 ¢ Introduction

Variable Names
The variable names used in FreeRTOS examples and arguments, use the following prefixes:

e ‘Cc’ - char type

e ‘s’ - short type

‘I - long type

e ‘X’ - BaseType_t and any other types not covered above

A variable name is further prefixed with a ‘u’ to indicate an unsigned type. If the value is a
pointer, the name is prefixed with ‘p’. An unsigned character variable would use the prefix
‘uc’, while a pointer to a char type, would be ‘pc’.

Function Names
Function names are prefixed with two components:

e The data type of the value returned
e The file that the function is defined in

These are some of the examples they provide:

e vTaskPrioritySet() returns a void and is defined within FreeRTOS file task.c.

e xQueueReceive() returns a variable of type BaseType_t and is defined within
FreeRTOS file queue.c.

e vSemaphoreCreateBinary() returns a void and is defined within FreeRTOS file
semphr.h.

In this context, the prefix ‘v’ means that the function returns void.
Macro Names

Macro names are given in uppercase, except for a prefix that indicates where they are
defined (Table 1-2).

Prefix File Example

port portable.h portMAX_DELAY

task task.h taskENTER_CRITICAL()
pd projdefs.h pdTRUE

config FreeRTOSConfig.h configUSE_PREEMPTION
err projdefs.h errQUEUE_FULL

Table 1-2. Macro name conventions used by FreeRTOS.

Header Files

Normally when using FreeRTOS there are #include statements required. Within the ESP32
Arduino programming environment, these are already provided internally. However, when
you use the ESP-IDF or a different platform, you will need to know about the header files

e 21

FreeRTOS for ESP32-Arduino

listed in Table 1-3. Because they are not required in the Arduino code, they are only men-
tioned here.

Header File Category Description

FreeRTOS.h First Should be the first file included.
FreeRTOSConfig.h Included by FreeRTOS.h Not required when FreeRTOS.h has been included.
task.h Tasks Task support

queue.h Queues Queue support

semphr.h Semaphores Semaphore and mutex support

timers.h Timers Timer support

Table 1-3. FreeRTOS Include Files

Arduino Setup

This book uses the installed Arduino IDE rather than the newer web offering. If you’ve not
already installed the Arduino IDE and used it, you might want to do so now. If you're using
MacOS and recently upgraded to Catalina, you will also need to update your Arduino soft-
ware. The IDE is downloadable from:

https://www.arduino.cc/en/main/software

Click the appropriate platform link for the install. At the time of writing, the website lists
the following choices:

e Windows Installer, for Windows XP and up
e Windows Zip file for non-admin install

e Windows App. Requires Win 8.1 or 10.

e Mac OS X 10.8 Mountain Lion or newer.

e Linux 32 bits.

e Linux 64 bits.

e Linux ARM 32-bits.

e Linux ARN 64-bits.

Install guidance or troubleshooting is best obtained from that Arduino website. Normally,
the IDE installs without problems.

ESP32 Arduino
To add ESP32 support to the Arduino IDE, open File->Preference (see Figure 1-1), Ardui-
no->Preferences for MacOS, and add:

https://dl.espressif.com/dl/package_esp32_index.json

to your "Additional Boards Manager URLs" text box. If you already have something in there,
then separate the addition with a comma (,).

e 22

Chapter 1 e Introduction

[] Preferences

Sketchbook location:

/Users fve3wwg/Documents /Arduino | Browse
Editor language: System Default (requires restart of Arduino)
Editor font size: 13
Interface scale: Automatic 100 % (requires restart of Arduino)
Theme: Default theme (requires restart of Arduino)
Show verbose output during: | | compilation | | upload
Compiler warnings: None

| Display line numbers | Enable Code Folding
Verify code after upload | Use external editor
Check for updates on startup Save when verifying or uploading

| Use accessibility features
Additional Boards Manager URLs: https://dl.espressif.com/dl/package_esp32_index.json,http://arduino.esp82 |

More preferences can be edited directly in the file
fUsers fve3wwg/Library/Arduinol5 fpreferences.txt
(edit only when Arduino is not running)

0K Cancel

Figure 1-1. File->Preference dialog.
Next choose Tools->Board->Board Manager (Figure 1-2):

e Then search for "ESP32" and click install (or update), if supporting the ESP32.

Tools Help
Auto Format
Archive Sketch
Fix Encoding & Reload
Manage Libraries... &8l Arduino Ydn
Serial Monitor {+3#M Arduino/Genuino Uno
Serial Plotter 3L Arduino Duemilanove or Diecimila
Arduino Nano
Arduino/Genuino Mega or Mega 2560
Board: "LOLIN D32" i
Upload Speed: "921600" Lol
Flash Frequency: "80MHz" Arduino Leonardo ETH
Partition Scheme: "Default” Arduino/Genuino Micro

Care Debug Level: "None" Arduino Eslpfﬂr!
Port Arduino Mini

Get Board Info Arduino Ethernet
Arduino Fio

Programmer: "USBasp" Arduino BT

Burn Bootloader LilyPad Arduino USB
LilyPad Arduino
Arduino Pro or Pro Mini

Boards Manager...

WIFi101 / WIFiNINA Firmware Updater

Figure 1-2. File->Board->Boards Manager menu selection.

Figure 1-3 shows the dialog after the ESP addition has been installed. That should be all you
need to do, to add Espressif support to your Arduino IDE.

e 23

FreeRTOS for ESP32-Arduino

[JoN] Boards Manager
Type | All B ese3z

e@sp32 by Espressif Systems version 1.0.4 INSTALLED
Boards Included In this package:

ESP32 Dev Module, WEMOS LoLin32, WEMOS D1 MINI ESP32.
Mare Info

Select version B Insta Remove

Close

Figure 1-3. Boards Manager after the ESP addition is installed.

ESP Related Arduino Resources
If IDE issues arise, then search the resources found at

https://www.arduino.cc/
If the problem is Espressif related, then there is the following Arduino GitHub page:
https://github.com/espressif/arduino-esp32

Cand C++

It surprises some to learn that the Arduino framework uses the C++ language. This may
be deemphasized to prevent scaring prospective students - a common perception is that
C++ is difficult. But C++ is increasingly finding its way into embedded programming circles
because of its advantages of stronger type checking among other advantages. The career
student is therefore encouraged to embrace it.

This book will use a dabbling of C++ language features when it is useful, instructive, or just
plain preferred. One trivial example is the keyword nullptr is favoured over the old C macro
NULL. Where C++ classes are used, they are simple objects. No C++ template program-
ming is used in this book, so there is no need for fear and loathing.

There is one area that Arduino users will bump into when looking at Espressif provided ex-
ample code. Most of their examples are written in C. The C language structure initialization
differs from C++, although there are efforts working towards harmonization. Listing 1-1
shows a fragment of an Espressif C language wifi scan example. Notice the initialization
syntax of the structure named wifi_config.

e 24

Chapter 1 e Introduction

static void wifi_scan(void)

{

wifi_config_t wifi_config = {
.sta = {
.ssid = DEFAULT_SSID,
.password = DEFAULT_PWD,
.scan_method = DEFAULT_SCAN_METHOD,
.sort_method = DEFAULT_SORT_METHOD,
.threshold.rssi = DEFAULT_RSSI,
.threshold.authmode = DEFAULT_AUTHMODE,
}7
};

Listing 1-1. Espressif examples/wifi/scan/main/scan.c fragment.

Members like .ssid are set to initialization values using the C language syntax. This style
of initialization is not yet supported by C++. Given that Arduino code is C++, you cannot
copy and paste C language structure initialization code into your program and expect it to
compile.

Listing 1-2 shows one way it can be reworked in C++ terms (advanced users can also use
the extern "C" approach). First, clear the structure completely to zero bytes by using the

memset() function. Once cleared, the individual members can be initialized as required.

static void wifi_scan(void)

{
wifi_config_t wifi_config;
memset (&wifi_config,0,sizeof wifi_config);
wifi_config.sta.ssid = DEFAULT_SID;
wifi_config.sta.password = DEFAULT_PWD;
wifi_config.sta..threshold.authmode = DEFAULT_AUTHMODE;
}

Listing 1-2. Function wifi_scan() Converted to C++ initialization.

FreeRTOS and C++

FreeRTOS is written in the C language to give it the greatest portability among microcon-
troller platforms and compiler tools. Yet it is quite useable from C++ code since the com-
piler is informed from the header files that the FreeRTOS API functions are C language dec-

e 25

FreeRTOS for ESP32-Arduino

larations. Because these are C language calls, some C++ restrictions naturally follow. For
example, when using the FreeRTOS queue, you cannot add an item that is a C++ object,
requiring constructors or destructors. The data item must be POD (Plain Old Data). This
is understandable when you consider that the C language doesn’t support class objects,
constructors, or destructors.

Arduino FreeRTOS Config

The Arduino environment that is built for your ESP32 uses a predefined FreeRTOS configu-
ration to declare the features that are supported and configure certain parameters. These
macros are already included for the Arduino but other environments like ESP-IDF, require
including the header file FreeRTOS.h. Many of the configured values for the ESP32 Arduino
are provided in Table 1-4 for your convenience. The detailed meaning of these values is
documented by the FreeRTOS reference manual, which is freely available online.

Macro Value Notes
configAPPLICATION_ALLOCATED_HEAP 1 ESP32 defined heap.
configCHECK_FOR_STACK_OVERFLOW 2 Check for stack overflow by initializing
stack with a value at task creation time.
configESP32_PER_TASK_DATA 1 Per task storage facility
configEXPECTED_IDLE_TIME_BEFORE_SLEEP |2
configGENERATE_RUN_TIME_STATS 0 Disabled
configIDLE_SHOULD_YIELD 0 Disabled
configINCLUDE_APPLICATION_DEFINED_ 0 Disabled
PRIVILEGED_FUNCTIONS
configMAX_TASK_NAME_LEN 16 Maximum name string length
configMINIMAL_STACK_SIZE 768 Idle task stack size (bytes)
configQUEUE_REGISTRY_SIZE 0 Queue registry not supported
configSUPPORT_DYNAMIC_ALLOCATION 1 Dynamic memory supported
configSUPPORT_STATIC_ALLOCATION No support
configTASKLIST_INCLUDE_COREID 0 Disabled
configUSE_ALTERNATIVE_API 0 Disabled
configUSE_APPLICATION_TASK_TAG 0 Disabled
configUSE_COUNTING_SEMAPHORES 1 Counting semaphores enabled
configUSE_MALLOC_FAILED_HOOK 0 Disabled
configUSE_MUTEXES 1 Mutexes enabled
configUSE_NEWLIB_REENTRANT 1 Reentrancy for newlib enabled
configUSE_PORT_OPTIMISED_TASK_SELEC- 0 Disabled
TION
configUSE_QUEUE_SETS 1 Queue sets enabled
configUSE_RECURSIVE_MUTEXES 1 Recursive mutexes enabled
configUSE_STATS_FORMATTING_FUNCTIONS |0 Disabled

e 26

Chapter 1 e Introduction

Macro Value Notes
configUSE_TASK_NOTIFICATIONS 1 Task notifications enabled
configUSE_TICKLESS_IDLE No support
configUSE_TIMERS 1 Timer support enabled
configTIMER_TASK_STACK_DEPTH 2048 Svc Tmr task stack size (bytes)
configTIMER_QUEUE_LENGTH 10 Depth of the command queue
configUSE_TIME_SLICING 1 Time slicing enabled (see reference
manual)
configUSE_TRACE_FACILITY 0 Disabled FreeRTOS trace facilities

Table 1-4. Some ESP32 Arduino FreeRTOS configuration values.
A number of these are of special interest to Arduino users because we can determine that:

e The maximum string name for tasks and other FreeRTOS objects is 16 characters
(configMAX_TASK_NAME_LEN).

e Thereissupportforcounting semaphores (configUSE_COUNTING_SEMAPHORES).

e There is support for mutexes (configUSE_MUTEXES).

e Mutex support includes recursive mutexes (configUSE_RECURSIVE_MUTEXES).

e There is support for queue sets (configUSE_QUEUE_SETS).

e There is support for task notification (configUSE_TASK_NOTIFICATIONS).

e There is support for FreeRTOS timers (configUSE_TIMERS).

e The Idle task uses a stack size of 768 bytes (configMINIMAL_STACK_SIZE).

For portability, the user can use these macros to determine the level of support available.

ESP32 Notes
This section provides a few brief reminders about ESP32 devices. The Espressif web re-
sources and forums are the best places to get more detailed information.

Arduino GPIO References

Arduino maps "digital pin x" to a port and pin combination on some platforms. For example,
digital pin 3 maps to pin PD3 on the ATmega328P. For the ESP32 Arduino environment,
digital pin x maps directly to GPIO x.

Input Only

The ESP32 platform also has hardware limitations for GPIO. For example, GPIO 34 to 39
inclusive can only be used for input. These GPIO pins also lack the programmed pull-up
resistor feature. For this reason, these inputs should always be used with external pull-up
resistors for push button and switch inputs to avoid floating signals. A resistance of 10k to
50k ohm is sufficient.

Reserved GPIOs

Several ESP32 GPIO pins are reserved or are already in use by peripherals. For example,
GPIO pins 6 through 11 are connected to the integrated SPI flash.

e 27

FreeRTOS for ESP32-Arduino

GPIO Voltage and Drive

The ESP32 device uses 3.3-volt GPIO ports and none are 5 volts tolerant. Inputs should
never be subjected to above 3.3 + 0.6 volts (one silicon diode voltage drop). Voltages
above 3.9 volts will subject the built-in protection diode to high currents and potentially de-
stroy it. With the protective ESD (Electrostatic Discharge) diode damaged, the GPIO will be
vulnerable to damage from static electricity (from the likes of the family cat). Alternatively,
the ESD diode can short, causing a general malfunction of the port.

Output GPIOs have programmable current strengths, which default to strength 2. This is
good for up to 20 mA.[3]

Programs

Arduino promotes the term "sketch" for their programs. I'll continue to refer to them as
programs because this is the more widely accepted term. If the student pursues a career
in embedded programming, he/she will most likely be using a non-Arduino framework for
building programs. So 1 think it best to get comfortable with the term.

Many of the demonstrations written for this book are illustrated using the Wemos Lolin
ESP32 dev board, which includes the built-in OLED. The OLED is only used by a few of the
demonstration programs. Even then, some of those demonstrations can use the Serial
Monitor instead. Otherwise, almost any "dev board" can be used if a reasonable comple-
ment of GPIOs is made available for you to use.

The serial interface brings with it a nagging problem for the Arduino ESP32. It would be
desirable to have programs that run both with and without the USB serial interface plugged
in. Yet it seems that the programs that make use of the serial interface will hang when not
connected. Yet the Serial Monitor is too useful to forego for debugging and informational
displays. Consequently, most demonstrations use the serial interface as provided by the
ESP32 inclusion of the newlib library.[4] The first printf() call encountered, will assume a
serial interface at 115,200 baud, 8 bits, no parity, and 1 stop bit. By default, the Arduino
IDE will provide this in its Serial Monitor.

It may be desirable in some cases to use a demonstration program without the Serial
Monitor. In that case, comment out the printf() statements and re-flash the recompiled
program. If it still hangs, look for remaining uncommented printf() calls.

Graphics/Drivers Used

The main graphic driver used is for the Wemos Lolin ESP32 that has the built-in OLED. This
library is found by using the Arduino Tools -> Manage Libraries and searching for "ESP8266
and ESP32 Oled Driver for SSD1306 display" by ThingPulse, Fabrice Weinberg.

TTGO ESP32 T-Display

The graphics driver used for the TTGO ESP32 T-Display unit is the driver found by the Ar-
duino Tools -> Manage Libraries and searching for "TFT_eSPI" by Bodmer (version 2.1.4
was tested). This driver requires further editing before it can be used (see Chapter 9, In-
terrupts).

e 28

Chapter 1 e Introduction

M5Stack

M5Stack examples in this book require that you’ve installed the drivers found by the Ardui-
no Tools -> Manage Libraries and searching for "M5Stack". Choose and install the library
"M5Stack" by M5Stack. Version 0.2.9 was tested in this book.

Assumptions about the Reader

This book is targeted to new and advanced Arduino users alike. The new student will
discover the benefits of FreeRTOS design by wading gently into RTOS concepts and the
APIL. The advanced user looking to become familiar with FreeRTOS can quickly familiarize
themselves with the API. The emphasis was placed on the practical but some background
material is provided for the benefit of new students.

Because this book is focused upon FreeRTOS, the reader is assumed to have some familiar-
ity with the ESP32 and the Arduino API. Activities like configuring and flashing the correct
board from the Arduino IDE is assumed. Those encountering difficulties in these areas are
encouraged to seek help from online documentation and forums for Arduino and Espressif.

Summary

At this point, I expect that you are champing at the bit to get started. By now, your Arduino
IDE has been made ready and you have some ESP32 hardware ready to play with. Let’s
begin that journey of discovery into FreeRTOS!

Web Resources

[1] https://en.wikipedia.org/wiki/Arduino

[2] https://www.freertos.org/Documentation/FreeRTOS_Reference_Manual_V10.0.0.pdf
[3] https://www.esp32.com/viewtopic.php?t=5840

[4] https://sourceware.org/newlib/

e 29

FreeRTOS for ESP32-Arduino

Index

Symbolen

O

+3.3 volts

$HOME

2>/dev/nul

3.3-volt GPIO ports
3.3-volt regulator
5-volt device

5 volts tolerant
5-volt tolerant GPIOs
"%s" format item
"\;" token
/usr/bin/nc
__volatile___ keyword

A

abusing the pointer
active high

active low

active low configuration
Adafruit Si7021 Library

ADC
ADC input value

Additional Boards Manager URLs

address pins
AlertLED

allocated on the stack
analog voltage

anti-static (ESD) wrist band

API

APP_CPU
Application CPU
application tasks
app_main()
Arduino

Arduino compiler options

Arduino environment
Arduino IDE

Arduino Serial Monitor
Arduino startup code
array

array extents

assert.h

e 302

290
99
290
290
290
28
19
99
28
99
285
290
228
141

78
60
264
156
119
189
178
22
157
82
286
177
272
203
139
139
31
32

17, 29, 288

285
31
22
19
32
35
36
49

assertion 118, 264, 272
assertion error 50
assertion fault 264
assert() macro 55
associated "user data" 77
assuming 292
asynchronous 77
asynchronous event 76
asynchronous routine 166
atomic 53, 116, 117, 122, 129, 236
atomically 18
atomicity 117
attachInterrupt() 169
automatic range finding 170
auto-reload 80
auto-reload timer 79
avoid locking 164
avoid overflowing the size

of the 32-bit register 173
B

bad practice 164
balking 53
Balking 52
Bankers Algorithm 164
barrier 97, 226, 229
BaseType_t 20
basic shell 283
baud 28
bicolour LED 288

binary semaphore

98, 105, 106, 119,

122, 133, 152, 153, 154, 1

57, 165, 203, 204

Binary semaphore 155
binary semaphore as a lock 108
binary semaphores 151, 192
binary semaphore take operation 204
bit fields 268
BIT(x) 292
block 97, 132, 149, 192, 203
block diagram 284
blocked 53, 55, 58, 76, 149, 152, 204, 206
Blocked 132
Blocked state 132

Index

blocking calls

blocks 135, 143, 150, 152, 205,
blocks forever

Bluetooth

Board Manager

boost the lower priority task
boost the priority

Bouncing metal contacts
broadcast address

bus transactions

busy-wait loop

C

C++ language

C++ objects

C++ reference

C++ startup

C++ std::map

C++ templates

cache

callback

capacity of a queue

C assert macro
Catalina

CH340

change semaphore
circular dependencies
C language structure initialization
ClearOnExit

client tasks

code

code aborts

code coverage

code maintenance
code smell

compass

compass readings
compiler

computes the frequency
concurrent
concurrent execution
concurrent processing
CONFIG_FREERTOS_ISR_STACKSIZE
configMAX_PRIORITIES
consume CPU time
consumers

122,

150
228
58
31
23
152
153
63
229
155
132

24
73
36
32
255
291
117
77
53
49
22
19
123
164
24
224
266
288
37
37
197
165
119
123
193
171
54
18
30
167
149
141
52

cooperative multitasking 131
counter peripheral 170
counting semaphore 98, 109, 210, 212
Counting Semaphore 155
counting semaphores 97, 107, 192
cowboy programming style 286
CP2102 19
CP2104 19
CPU 0 31, 36, 139
CPU 1 31, 36
CPU cycles 141
CPU number 36
CPU starved 150
CPU time 37
CPU time fairness 131
create a timer 80
create tasks before starting

the scheduler 130
creation of the mailbox 118
critical.ino 253
critical section 18
critical sections 243
current strengths 28
custom GPIO values 158
D

daemon task 77
damon task 89
data item lifetime 56
Data RAM 38
deadlock 106, 107, 110, 114, 164
Deadlock 109
deadlock avoidance 164
deadlock detection 164
deadlock prevention 114
deadlock prevention technique 107
deadlocks 18
deadly embrace 106
debounce 63
debounced 60
debouncing 64
debug 89, 283
debugger 283
debugging 60
debugging serial link 283
debugging sessions 283

e 303

FreeRTOS for ESP32-Arduino

delay 86, 136, 247
delay() 35, 41, 60, 75,
76, 90, 158, 283
delete (terminate) a task 41
deleting self 41
dev board 19, 28, 159,
194, 265, 272, 288
device index 270
devx 270
Digital Multi Meter 100
Dining Philosopher’s problem 107
D/IRAM 39
directly notify 203
disabled interrupts 253
disable interrupts 255
disabling interrupts 253
disconnect 226
divide and conquer 288
dividing up CPU 144
DMM 100
dormant 80, 81
Dormant 79
dormant state 81
driver 179
dual-core ESP32 30
dynamically allocated queue 57
dynamically allocated timers 81
E
eAction 213
eBlocked 259
Echo signal 100
eDeleted 259
efficiency 56, 292
efficient 291
elncrement 213
elapsed time 176
embedded devices 283
empty 97
empty mailbox capability 120
empty queue 57, 59
eNoAction 213
errQUEUE_EMPTY 56
errQUEUE_FULL 55, 63
eRunning 259
ESD (Electrostatic Discharge) 28

e 304

ESD preventative measures 273
ESD protection 272
ESD protection diodes 170
eSetBits 213
eSetValueWithoutOverwrite 213
eSetValueWithOverwrite 213
ESP32 64-bit high-resolution timer 170
ESP32CAM 19
ESP32 Lolin with OLED 19
ESP32 Oled Driver 28
ESP32-S 30
ESP32-S2 30
ESP32 support 22
ESP32 system mutex 253
ESP32 Wemos Lolin device 159
ESP8266 20
ESP hardware timer API 75
ESP-IDF 20, 39, 252, 260, 288
Espressif 29
Espressif product offerings 20
esp_task_wdt_add() 246
esp_task_wdt.h 245
esp_task_wdt_init() 246, 247

esp_task_wdt_reset()

244, 246, 247

ESP Technical Reference Manual 180
eSuspended 259
eTaskGetState 259
EventBits_t 224, 225
EventBits_t Type 223
event flags 223
eventgr.ino 225

event group

98, 203, 223, 225,

229, 236, 241, 267

event groups 203, 223
event notification 203, 229
events 192, 203, 285
event word 212
evsync.ino 236
excessive stack nesting 168
exclusion principle 151
exec 290
execution 132
execution priority 130
execution state of a task 132
extender chip 158
extern 286

Index

external pull-up resistor
external symbol
extern "C"

F

fatal error

fault

FIFO

FIFO queue

file globbing

find

find command

find command’s name option
five heap implementations
fixed time slice

Floating point

floating potential

flow control

Forums

fragmented

free()

FreeBSD

FreeRTOS

FreeRTOS configuration
FreeRTOS manual

FreeRTOS Reference manual
FreeRTOS software timer support
FreeRTOS task priority
freqctr-m5.ino
freqctr-ttgo.ino
frequency counter
frequency measurement
Fritzing diagrams
FromISR

FromISR()

FromISR suffix
FT232RL

full

full queue

full slice

full stack allocation
full-time slice

169,

G
gatekeeper API and task
gatekeeper.ino

194
286
25, 32

43
285
56

53
291
290
289
291
38
131
173
169
53
282
57
39,73
289
17

26

20
260
75
168
188
187, 188
170, 178
169
293
176, 190
149
215
19

97

58
46, 47
167
131

266
262, 265

gatekeepers 261
gatekeeper task 261, 262
generated frequency 178
generic code 291
give 97, 154
given 97, 154, 157
given binary semaphore 194
gives 98
giving 151
Giving 98
global value that is null 118
global variables 116
government contract approach 283
GPIO 170
GPIO O 19
GPIO expanders 158
GPIO extender 155
GPIO extender chips 157, 262
GPIO interrupt processing 195
graphic driver 28
graphics driver support 186
grep 290
grep command 290
grep regular expression 290
group notifications 223
H

hall effect sensor 247
hallRead() 108
hammered with interrupts 176
handle 54, 77, 198, 202, 224
handles 286
hangs 28
hardcore priority 130
hardware timer 30
HC-SR04 100, 106
HC-SR04 module 99
header files 21
heap 57
heap bytes available 38, 42
heap_caps_free 39
heap_caps_malloc() 39
high-resolution hardware timers 76
high water mark 38
hints 282
HMC5883L 118, 119

e 305

FreeRTOS for ESP32-Arduino

HomeBrew 228
H option 290
http_server() 226
humidity 122
I
12C 119, 157, 158, 165, 287
I2C address 156, 157, 262, 270, 271
I2C bus 119, 122, 151, 152, 153, 155,
156, 158, 163, 165, 261, 262
I12C devices 151, 261
I12C expander chip 157
12C problem 272
12C temperature sensor 165
12C transaction 158, 263
12C transmission 272
IDE issues 24
IDLE1 45
idle task 130, 149
Idle task 252
IDLE task 43
Idle task in Arduino 252
incoming signal frequency 170

initArduino() 32

initialize the semaphore 106
initial state of a created task 132
inlined function 197
inline functions 291
inline keyword 197
input only 169
input protection diodes 170
INPUT_PULLUP 169
input signal 170
Input signal conditioning 169
Instruction RAM 39
Instruction Random Access Memory 168
interface 262
internal linked list of memory blocks 167

interrupt 18, 149, 166, 169, 177, 193
Interrupt 180
interrupted code 167
interrupted task 167
interrupt flag 168, 176
interrupt priorities 1 to 3 149
interrupt priority 168

interrupts 143, 168, 169, 190, 217, 253

e 306

Interrupts 166
Interrupt Service Routine 166
interrupts for each CPU core 167
interrupt status word 176
INT pin 156
I/0 peripheral event 132
ipcl 45
IP number 227
IRAM 168
IRAM_ATTR 168, 190
IRAM memory 169
ISR 73, 166, 170, 173, 176,

177,179, 191, 193, 194, 203
ISR code 168
ISR for GPIO interrupts 169
ISR handler 196
ISR (Interrupt Service Routine) 53
ISR is suspended 168
ISR routine 167, 175, 177

ISR routines 168, 190, 197, 198, 217, 284

ISR specific macros 255
ISR stack 166
ISR stack convention 167
ISR tracing 288
L

lambda functions 174
LED 288
LED indicators 218
LEDs 33, 282
level converter 100
library nesting issue 164
lifetime of the object 73
limitations for GPIO 27
limit control devices 98
limit the scope 286
Linux 228, 289
listen for UDP packets 229
local storage 258
lock 44,106, 152, 153, 163, 165
lock a mutex 154
locking semaphore 122
lock multiple locks 164
lock nesting problem 165
locks 153
Lolin 32 ESP 140

Index

Lolin ESP32 99
Lolin module’s OLED display 119

loop() 31, 32, 41, 84, 86, 131, 150,
205, 208, 247, 283, 284, 286
loopTask 31, 32, 37, 41, 45, 49,
131, 133, 137, 138, 141,
236, 243, 247, 249, 251, 284
loopTask() 205, 236, 244
loopTaskWDTEnabled 244, 245
lowest execution priority 31
M
M5Stack 29, 169, 188, 189
MacOS 19, 22, 228, 289
macro 197
Macro names 21
macro procedures 291
magic smoke 287
mailbox 116, 117, 118, 119, 122, 123
mailboxes 123
mailbox.ino 120
main Arduino task 31
main task 41
make menuconfig 39
malloc() 167
malloc() and free() 38
MALLOC_CAP_* macro values 39
maximum queue depth 55
MCU 30
member handle 202
memory corruption 56, 291

memory leak 73

memory leaks 291
memory-mapped register 180
memset() 25
Microcontroller Unit 30
micros() 76, 170
microsecond timer 176
microsecond timer value 176
millis() 75, 90
monitoring task 198
monopolizing the CPU 30
multi-core support 37
multiple CPU problem 117
multiple locks 164
multitasking friendly 133

114
18, 106, 108, 151, 152, 153,
154, 155, 157, 158, 163, 165,
194, 198, 202, 203, 253, 286

Murphy’s law
mutex

mutex boosts 153
mutexes 97,192, 199, 261, 285
mutual exclusion 151
N
namespace 196
naming conventions 20
nc 228
nested calls 167
nested ISR routine calls 167
nested lock count 163
nested locking 165
netcat 229
netcat command 228
netcat.exe 229
newbie 282, 289
newlib 285
newlib library 28, 38, 167
non-empty mailbox 118
non-reentrant 166, 167
no priority boost 199
notify call 203
Notifying an event group 224
not ready state 58
nRF24L01 library 290
NULL 24, 35, 37, 55, 57, 176,
192, 212, 256
nullptr 24, 35, 37, 40, 42, 55, 57, 77,

81,176, 192, 212, 256, 258, 285

(o]
object lifetimes 285
observable strangeness 288

OLED 19, 28, 99, 104, 119,
140, 159, 169, 173, 177, 178
OLED display 178
OLED display driver 179
OLED I2C address 140

one-shot timer 79

optimizations 116
order of operations 292
Output GPIOs 28

e 307

FreeRTOS for ESP32-Arduino

overly locked mutex 163
owner 152, 153
owns 153
P
PO to P7 270
packaged software 163
panic reboot 246
parity 28
PCF8574 155, 156, 157, 158, 159
PCF8574A 155, 156, 157, 264
PCF8574P 262, 264, 267,
270, 271, 272, 273
PCF8574P DIP pinout 262
PCF8574P GPIO extender chips 261
PCF8574P GPIO pins 262
PCF8575P 262
pcnt_counter_pause() 179
pdFAIL 82, 97, 154, 193, 213
pdFALSE 81, 205, 210, 212, 224, 260
PDIP 155
pdMS_TO_TICKS() 80
pdMS_TO_TICKS(ms) 55
pdPASS 55, 56, 82, 117, 154, 213
pdTRUE 81, 204, 205, 206,
212, 224, 228, 260
peek 123
ping 105
pinMode() 169
Pinout of the PCF8574/PCF8574A chip 156
plain mutex 164
Plastic Dual Inline Package 155
POD (Plain Old Data) 26
polling 17
portability 20, 27
portDISABLE_INTERRUPTS 255
portENABLE_INTERRUPTS 255
portENTER_CRITICAL 253
portENTER_CRITICAL_ISR 255
portEXIT_CRITICAL 253
portEXIT_CRITICAL_ISR 255
port index 270
portMAX_DELAY 55, 58, 59, 63, 67,
82, 105, 108, 224
portMUX_TYPE 253, 255
portx 270

e 308

portYIELD_FROM_ISR() 177
POSIX system 289
potentiometer 178
precedence of C operators 292
preempted 30
pre-emption 131
preemptive context changes 45
preemptive scheduling 18, 131
pre-empts 153
print() 86
printf() 28, 38, 60, 77, 89, 285
priorities 151
priority 18, 30
priority-based interrupts 167
priority-based queue 53
priority inversion 152, 153, 199
priority levels 131
priority numbers range 149
PRO_CPU 139
producers 52
program fault 285
programming 19
programs 28
protected resource 151
protection diode 28
protocol 151
Protocol CPU 37, 139
provision for interrupt processing 73
pull-up 27,271
pull-up resistances 194
pull-up resistor 169
pullup resistor 60
pull-up resistor/regulator circuit 155
pull-up resistors 27
pulNotificationValue 213
pulse 45
pulse counter 170, 176
pulse counter peripheral 169, 180
pulselnLong() 106
Pulse Width Modulation 170
push button and switch inputs 27
push button input GPIO 60
pvTaskGetThreadlLocalStoragePointer 256
pvTimerGetTimerID() 78

PWM 170, 177, 178, 179, 187, 189,
PWM Arduino API

190
170

Index

PWM frequency 178
pxHigherPriorityTaskWoken 215
Q

gset.ino 195
qualities of an ISR 166
quasi-bidirectional device 271

query the current event group bit values
241

queue 52,117, 118, 132, 141,
152, 153, 191, 192, 194,

196, 198, 202, 203, 267, 286

queue depth 53, 57, 60
queue depths 192
queue handle 56
queue is full 58
queue object 54
queue overwrite 129
queue peek 129
queues 191, 192, 199, 261, 285
queue set 191, 194, 196, 198
QueueSetHandle_t 192
queue sets 199
Queue sets 202
Queue Set Traps 193
quirk of the PCF8574 chip 156
R

race condition 198
race conditions 291
rand() 167
random seed value 108
rand_r() 167
Range finding 169
Ready 132
ready state 58
Ready state 131, 132, 139, 140, 149
ready task 131, 149
Real-time priority 150
Rebooting 249
recursively 167
recursive mutex 163, 164, 165
recursive Mutex 155
reentrant 167
reentrant routines 167
reference 196

register 116, 117
register optimizations 117
registers 30
register save and call convention 168
relative humidity 120
releasing the mutex 153
reneging 53
Reneging 52
reset 150
restart 150
resumption 44
RF24.h 290, 291
RISING 169
rising edge 169
rising pulse 169
risks 165
round-robin 48, 49, 131, 133,
142, 149, 150
Round-Robin 139
round-robin scheduling 49, 139
round-robin unfairness 143
routine in one place 197
RTOS daemon 252
RTOS daemon task 77, 241
running 80
Running 79, 132
running out of stack space 285
Running state 132
S
safety-critical applications 268

scheduler 30, 139, 149, 177, 197, 253
scheduler component of FreeRTOS 139
scheduling 131
scheduling can be unbalanced 143

schematic 119, 156, 177, 194, 205, 264
Schematic diagrams 293
SCL 156, 157, 272
scope capture 46
scope rules 286
scoping rules 291
SDA 156, 157, 272
SDK 39
self 42
semaphore 97, 119, 152, 198, 202, 203
semaphores 191, 261, 285

e 309

FreeRTOS for ESP32-Arduino

send a pointer through a queue 285
sending data items by pointer 73

sensor modules 119
sequencing of the locks 114
serial interface 28
serial monitor 37, 227
Serial monitor 60

Serial Monitor 28, 99, 104, 106, 107,
119, 123, 133, 135, 158, 159,

205, 208, 218, 225, 246, 249,

264, 272, 284, 288

serial monitor output 35
Serial Monitor output 134, 135
setup() 31, 32, 35, 36, 60, 67,

84, 86, 97, 105, 108, 121, 131,
133, 136, 141, 150, 157, 193, 196,
198, 205, 246, 267, 283, 284, 286

Setup25_TTGO_T_Display.h 187
share one ISR routine 197
share the CPU 48
Si7021 118, 119
Si7021 sensor 119
signal generator 169

signal level translations 99
silencing of the speaker

on the M5Stack 189
simultaneous access 151
single or multiple queuing sources 53
sink current 156
sinked 264
sketch 28
slave devices 151
Smart Notify 213
SMP 139
snprintf() 77
Soc 17
sole owner 151
source current 156
sourced 264
special calling requirements 166
special case of the queue 129
spin lock 253
spinning 47
SPI RAM 39
SRAM 17, 19, 60
SSD1302 140

e 310

SSD1306

SSD1306 OLED
stack

stack bytes

stack for ISR routines
stack high water mark
stack size

Stack size

stack size limitations
stack space
StackType_t

stack usage

starts the FreeRTOS scheduler
state machine

states of a FreeRTOS task
static

static electricity

"static" keyword

static keyword

static queue

static queues

StaticTimer_t

std::string

stop bit

strdup()

struct

stubbing out your application
stub functions

suffix "FromISR"

support tasks

suspend

suspend and resume tasks
suspended

Suspended

Suspended state

suspending

suspending a task
suspension

symmetric multiprocessing
synchronization

synchronize

synchronizing

synchronous event

system tick

system tick interrupt

28, 140, 177

99

17

35
167
38
37, 40
36

76

77

40

38
130
17
132
286
28

40
286
55

54

80

73

28

73
35, 196
285
283
73

31

39

43
149, 150
132
132
137
44

44
139
97, 254
97

98

52
177
131, 142,

149, 168, 253

Index

system timer ticks

T
take
taken
taking

task 30, 117, 131, 166,

task context change
Task Control Block

Task Control Block (TCB)

task creation

task deletes another
task deletes self
taskENTER_CRITICAL()
task event notification
task event word

task execution
taskEXIT_CRITICAL()
task handle

task handles
tasklocal.ino

task local storage
tasknfyl.ino
tasknfy3.ino
tasknfy4.ino
tasknfy5.ino

task notifications

task notification word
task notify event word
task preemption

Task preemption

task priorities

task priority

task ready list

tasks

tasks blocked waiting for a queue
taskSCHEDULER_NOT_STARTED
taskSCHEDULER_RUNNING
taskSCHEDULER_SUSPENDED

task slices
task’s local storage
task’s stack size

task that has been suspended
task that is all ready to go
47, 48, 49, 63, 133

taskYIELD()
TCB

97, 98, 154,

37, 40, 42, 44,

131

158
154
98
203
139
39
38
31
43
43
253
203
204
203
253
258
35
256
243
207
212
214
222
223
204
212
46
51
31
130
139
285
57
259
259
259
46
258
37
132
137

40

TCP/IP

TCP/IP networking
temperature
temporarily boosted
temporary boost

temporary priority boost

TFT_eSPI
TFT_eSPI.h
threshold O
threshold 1
threshold interrupts
threshold status
throw-away code
throwie

tick interrupt

tick interrupts

tick period

ticks

TickType_t

timeout

timer

timer callback
timer command queue
timer daemon task
timer ID

timer instances
timer service task
timer tick

Time Sharing Option
time slice

time slices

tips

"Tmr Svc" task

trial measurements
trickle-down effect
troubleshooting
Troubleshooting
TSO

TTGO ESP32 T-Display

TTGO ESP32 T-Display unit

TTL to serial device
type option

U
udp_broadcast()
UDP broadcast server

31, 37

19

120, 122

165

153

154, 165

28, 186

186

170

170

170

176

289

114

117

143

47

204

20, 91

30, 236

18, 143
76,78

77

130

77

77

77

116

17

18, 30, 44, 47, 48
131

282

77

172

144

158

179, 187, 189, 272
17
169
28, 186
19
289

226
227

e 311

FreeRTOS for ESP32-Arduino

UDP packets 228, 229
uinté4_t 174
ulBitsToClearOnEntry 213
ulBitsToClearOnExit 213
ulTaskNotifyTake 204
ulTaskNotifyTake() 204, 205, 206,

207, 212
ultrasonic module 98
ultrasonic transducers 99
UML 285
unblocked 58, 59, 123, 152, 153, 177
unblocks 97
unequal execution time 150
unequal time slices 143
unit testing 261
unlock 154, 163
unlocked 154, 157
unlock too many times 163
Unreported errors 50

unused stack bytes 31

update the mailbox value 117
USB to serial interface 225
user provided callback 76
User_Setup.h 186
User_Setup_Select.h 186, 187
USE_SSD1306 99
uxBitsToSet 236
uxBitsToWait 224
uxBitsToWaitFor 224, 236
uxQueueMessagesWaiting() 72
uxQueueSpacesAvailable() 72
uxSemaphoreGetCount() 98
uxTaskGetNumberOfTasks 259
uxTaskGetStackHighWaterMark() 35
\"

validation 19
variable length line of text 73
vEventGroupDelete() 241
virtual GPIO number 262
volatile 117
volatile attribute 117
volatile keyword 116
voluntary context switch 49

voluntary context switches 51
vSemaphoreDelete 155

e 312

vTaskDelay 75
vTaskDelay() 76, 90
vTaskDelay(10) 144
vTaskDelayUntil() 92, 95, 105
vTaskDelete() 42,43
vTaskDelete(nullptr) 284
vTaskPrioritySet() 133
vTaskResume() 132, 138
vTaskSetThreadLocalStoragePointer 256
vTaskStartScheduler() 130
vTaskSuspend() 132
vTaskSuspendAll 259
vulnerable to exploits 291
w
wait for a notification 204
wait_ticks 55, 56
wakeup flag 206
watchdog 247, 249, 252
watchdogl.ino 246
watchdog is triggered 246
watchdog timer 243, 246, 251
watchdog timer reset call 244
watchdog timers 150, 243
Wemos Lolin ESP32 28, 169,
172,177, 178
Wemos Lolin ESP32 dev board 28
WiFi 19, 31, 37, 98, 226, 229
WiFi credentials 225
WiFi facility 226
WiFi router 225, 226, 229
Windows Subsystem for Linux 289
wiring diagram 293
woken 176, 177, 197
WSL 229, 289
X
XClearCountOnExit 204, 205
xClearOnExit 224
XEventGroupClearBits 241
XEventGroupClearBitsFromISR() 241
XEventGroupCreate 223
XEventGroupCreateStatic 223
XEventGroupGetBits() 241
XEventGroupGetBitsFromISR() 241
XEventGroupSetBits 226

Index

XEventGroupSetBits() 223, 224, 242
XEventGroupSetBitsFromISR 242
XEventGroupSetBitsFromISR() 223
XEventGroupSync() 236, 237
xEventGroupWaitBits() 223, 224, 242, 269
XGPIO 262, 263, 267, 268, 270, 271
XGPIO to pin mappings 262
xIndex 256
XPortGetCoreID() 36
XPortGetFreeHeapSize() 42
XQueueAddToSet 192
XQueueAddToSet() 192, 193, 194
XQueueCreate 57, 118
XQueueCreateSet() 198
XQueueCreateStatic 55
xQueueDelete 57
XQueueOverwrite 117
xQueueOverwrite() 118
xQueuePeek() 73,118, 123
XQueueReceive 56, 57
xQueueReceive() 63, 118, 191, 193, 199
XQueueReset 57
xQueueReset() 68, 71, 73
XxQueueSelectFromSet() 192, 198,

199, 202
xQueueSendFromISR() 176
xQueueSendFromISR() call 176
XQueueSendToBack 55
xQueueSendToBack () 56
XxQueueSendToBackFromISR() 73
XxQueueSendToFront() 56
xSemaphoreCreateMutex() 157
xSemaphoreCreateMutexStatic 154
xSemaphoreCreateMutex(void); 154
xSemaphoreCreateRecursiveMutex 164
XxSemaphoreGive 154
xSemaphoreGive() 164
XxSemaphoreGiveRecursive 164
xSemaphoreGiveRecursive() 164
XxSemaphoreTake 154
xSemaphoreTake() 154, 164
XxSemaphoreTakeRecursive 164
xSemaphoreTakeRecursive() 164
XTaskCallApplicationTaskHook() 260
XTaskCreate() 32,132
XTaskCreatePinnedToCore 37

xTaskCreatePinnedToCore() 32, 37, 49

xTaskCreateStatic()
xTaskCreateStaticPinnedToCore()
xTaskDelayUntil()
xTaskGetCurrentTaskHandle()
xTaskGetSchedulerState
xTaskGetTickCount
xTaskGetTickCount()
xTaskGetTickCountFromISR
xTaskNotify()

xTaskNotifyGive() 205,
xTaskNotifyGiveFromISR()
xTaskNotifyWait
xTaskNotifyWait() 205,
xTaskResumeAll
xTimerChangePeriod()
xTimerCreate()

xTimerReset()
xTimerSetTimerID()
xTimerStart()

xWaitForAlIBits

Y
yield
yields

39, 40
39

90, 91
44

259

90, 259
90

259

213

207, 208
206

204

212, 217
259, 260
81, 82
79

81

78

79, 81
224

47, 149
143

e 313

Warren Gay

Warren Gay is a
datablocks.net senior
software developer,
writing Linux internet
servers in C++. He got
involved with electronics
at an early age, and
since then he has built
microcomputers and has
worked with MC68HC705,
AVR, STM32, ESP32 and
ARM computers, just to
name a few.

ISBN 978-1-907920-93-6

781907 920936‘
Elektor International Media BV

www.elektor.com

9

ektor

FreeRTOS for ESP32-Arduino

Practical Multitasking Fundamentals

Programming embedded systems is difficult because of resource
constraints and limited debugging facilities. Why develop your own
Real-Time Operating System (RTOS) as well as your application
when the proven FreeRTOS software is freely available? Why not
start with a validated foundation?

Every software developer knows that you must divide a difficult
problem into smaller ones to conquer it. Using separate
preemptive tasks and FreeRTOS communication mechanisms,

a clean separation of functions is achieved within the entire
application. This results in safe and maintainable designs.

Practicing engineers and students alike can use this book and the
ESP32 Arduino environment to wade into FreeRTOS concepts at a
comfortable pace. The well-organized text enables you to master
each concept before starting the next chapter. Practical breadboard
experiments and schematics are included to bring the lessons
home. Experience is the best teacher.

Each chapter includes exercises to test your knowledge. The
coverage of the FreeRTOS Application Programming Interface

(API) is complete for the ESP32 Arduino environment. You can
apply what you learn to other FreeRTOS environments, including
Espressif's ESP-IDF. The source code is available from github.com.
All of these resources put you in the driver’s seat when it is time to
develop your next uber-cool ESP32 project.

What you will learn:

How preemptive scheduling works within FreeRTOS
The Arduino startup “loopTask”

Message queues

FreeRTOS timers and the IDLE task

The semaphore, mutex, and their differences
The mailbox and its application

Real-time task priorities and its effect
Interrupt interaction and use with FreeRTOS
Queue sets

Notifying tasks with events

Event groups

Critical sections

Task local storage

The gatekeeper task

